Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

100-121k^(2)=0
What are the solutions to the given equation?
Choose 1 answer:
(A) 
k=(100)/(121)
(B) 
k=-(100)/(121) and 
k=(100)/(121)
(c) 
k=(10)/(11)
(D) 
k=-(10)/(11) and 
k=(10)/(11)

100121k2=0 100-121 k^{2}=0 \newlineWhat are the solutions to the given equation?\newlineChoose 11 answer:\newline(A) k=100121 k=\frac{100}{121} \newline(B) k=100121 k=-\frac{100}{121} and k=100121 k=\frac{100}{121} \newline(c) k=1011 k=\frac{10}{11} \newline(D) k=1011 k=-\frac{10}{11} and k=1011 k=\frac{10}{11}

Full solution

Q. 100121k2=0 100-121 k^{2}=0 \newlineWhat are the solutions to the given equation?\newlineChoose 11 answer:\newline(A) k=100121 k=\frac{100}{121} \newline(B) k=100121 k=-\frac{100}{121} and k=100121 k=\frac{100}{121} \newline(c) k=1011 k=\frac{10}{11} \newline(D) k=1011 k=-\frac{10}{11} and k=1011 k=\frac{10}{11}
  1. Question Prompt: question_prompt: "What are the solutions to the given equation 100121k2=0100-121k^{2}=0?"
  2. Addition Step: Step 11: Add 121k2121k^2 to both sides to isolate the k2k^2 term, so it becomes 121k2=100121k^2 = 100.
  3. Division Step: Step 22: Divide both sides by 121121 to solve for k2k^2, getting k2=100121k^2 = \frac{100}{121}.
  4. Square Root Step: Step 33: Take the square root of both sides to solve for kk, remembering that there are two solutions: k=±100121k = \pm\sqrt{\frac{100}{121}}.
  5. Final Solution: Step 44: Simplify the square root to get k=±1011k = \pm\frac{10}{11}, which means k=1011k = \frac{10}{11} or k=1011k = -\frac{10}{11}.

More problems from Solve a quadratic equation using the zero product property