Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(y+y^(2))/(y^(-(2)/(3)))
Which of the following expressions is equivalent to the given expression assuming 
y is nonzero?
Choose 1 answer:
(A) 
y^(-(3)/(2))+y^(-3)
(B) 
y^((3)/(2))+y^(3)
(C) 
y^((1)/(3))+y^((4)/(3))
(D) 
y^((5)/(3))+y^((8)/(3))

y+y2y23 \frac{y+y^{2}}{y^{-\frac{2}{3}}} \newlineWhich of the following expressions is equivalent to the given expression assuming y y is nonzero?\newlineChoose 11 answer:\newline(A) y32+y3 y^{-\frac{3}{2}}+y^{-3} \newline(B) y32+y3 y^{\frac{3}{2}}+y^{3} \newline(C) y13+y43 y^{\frac{1}{3}}+y^{\frac{4}{3}} \newline(D) y53+y83 y^{\frac{5}{3}}+y^{\frac{8}{3}}

Full solution

Q. y+y2y23 \frac{y+y^{2}}{y^{-\frac{2}{3}}} \newlineWhich of the following expressions is equivalent to the given expression assuming y y is nonzero?\newlineChoose 11 answer:\newline(A) y32+y3 y^{-\frac{3}{2}}+y^{-3} \newline(B) y32+y3 y^{\frac{3}{2}}+y^{3} \newline(C) y13+y43 y^{\frac{1}{3}}+y^{\frac{4}{3}} \newline(D) y53+y83 y^{\frac{5}{3}}+y^{\frac{8}{3}}
  1. Multiply by y23y^{\frac{2}{3}}: Simplify the given expression by multiplying both the numerator and the denominator by y23y^{\frac{2}{3}} to eliminate the negative exponent in the denominator.\newlineGiven expression: y+y2y(23)\frac{y + y^2}{y^{-\left(\frac{2}{3}\right)}}\newlineMultiply numerator and denominator by y23y^{\frac{2}{3}}: yy23+y2y23y(23)y23\frac{y \cdot y^{\frac{2}{3}} + y^2 \cdot y^{\frac{2}{3}}}{y^{-\left(\frac{2}{3}\right)} \cdot y^{\frac{2}{3}}}
  2. Apply laws of exponents: Apply the laws of exponents to simplify the expression further.\newlineWhen multiplying like bases, we add the exponents: y(1+23)+y(2+23)y^{(1 + \frac{2}{3})} + y^{(2 + \frac{2}{3})}\newlineSimplify the exponents: y(33+23)+y(63+23)y^{(\frac{3}{3} + \frac{2}{3})} + y^{(\frac{6}{3} + \frac{2}{3})}
  3. Perform addition of exponents: Perform the addition of the exponents. y53+y83y^{\frac{5}{3}} + y^{\frac{8}{3}}
  4. Match with answer choices: Match the simplified expression with the given answer choices.\newlineThe simplified expression is y53+y83y^{\frac{5}{3}} + y^{\frac{8}{3}}, which corresponds to answer choice (D).

More problems from Compare linear, exponential, and quadratic growth