Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[y=3(2x^(2)-x-1)],[y=4x+2]:}
If 
(x_(1),y_(1)) and 
(x_(2),y_(2)) are distinct solutions to the system of equations shown, what is the value of 
y_(1)+y_(2) ?

y=3(2x2x1)y=4x+2 \begin{array}{l} y=3\left(2 x^{2}-x-1\right) \\ y=4 x+2 \end{array} \newlineIf (x1,y1) \left(x_{1}, y_{1}\right) and (x2,y2) \left(x_{2}, y_{2}\right) are distinct solutions to the system of equations shown, what is the value of y1+y2 y_{1}+y_{2} ?

Full solution

Q. y=3(2x2x1)y=4x+2 \begin{array}{l} y=3\left(2 x^{2}-x-1\right) \\ y=4 x+2 \end{array} \newlineIf (x1,y1) \left(x_{1}, y_{1}\right) and (x2,y2) \left(x_{2}, y_{2}\right) are distinct solutions to the system of equations shown, what is the value of y1+y2 y_{1}+y_{2} ?
  1. Set Equations Equal: We have the system of equations:\newliney=3(2x2x1)y = 3(2x^2 - x - 1)\newliney=4x+2y = 4x + 2\newlineTo find the solutions (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2), we need to set the two equations equal to each other and solve for xx.\newline3(2x2x1)=4x+23(2x^2 - x - 1) = 4x + 2
  2. Distribute and Simplify: Distribute the 33 on the left side of the equation: 6x23x3=4x+26x^2 - 3x - 3 = 4x + 2
  3. Quadratic Formula: Move all terms to one side to set the equation to zero:\newline6x23x34x2=06x^2 - 3x - 3 - 4x - 2 = 0\newline6x27x5=06x^2 - 7x - 5 = 0
  4. Substitute Values: Now we need to solve the quadratic equation 6x27x5=06x^2 - 7x - 5 = 0. This can be done by factoring, completing the square, or using the quadratic formula. The equation does not factor easily, so we will use the quadratic formula:\newlinex=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\newlinewhere a=6a = 6, b=7b = -7, and c=5c = -5.
  5. Solve for x: Substitute the values of aa, bb, and cc into the quadratic formula:\newlinex=(7)±(7)24(6)(5)2(6)x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(6)(-5)}}{2(6)}\newlinex=7±49+12012x = \frac{7 \pm \sqrt{49 + 120}}{12}\newlinex=7±16912x = \frac{7 \pm \sqrt{169}}{12}\newlinex=7±1312x = \frac{7 \pm 13}{12}
  6. Find y Values: Solve for the two possible values of x:\newlinex1=7+1312=2012=53x_1 = \frac{7 + 13}{12} = \frac{20}{12} = \frac{5}{3}\newlinex2=71312=612=12x_2 = \frac{7 - 13}{12} = \frac{-6}{12} = -\frac{1}{2}
  7. Calculate y1+y2y_1 + y_2: Now we need to find the corresponding yy values for each xx by substituting x1x_1 and x2x_2 into either of the original equations. We'll use the simpler equation y=4x+2y = 4x + 2. For x1=53x_1 = \frac{5}{3}: y1=4(53)+2y_1 = 4\left(\frac{5}{3}\right) + 2 y1=203+2y_1 = \frac{20}{3} + 2 y1=203+63y_1 = \frac{20}{3} + \frac{6}{3} yy00
  8. Calculate y1+y2y_1 + y_2: Now we need to find the corresponding yy values for each xx by substituting x1x_1 and x2x_2 into either of the original equations. We'll use the simpler equation y=4x+2y = 4x + 2. For x1=53x_1 = \frac{5}{3}: y1=4(53)+2y_1 = 4\left(\frac{5}{3}\right) + 2 y1=203+2y_1 = \frac{20}{3} + 2 y1=203+63y_1 = \frac{20}{3} + \frac{6}{3} yy00For yy11: yy22 yy33 yy44
  9. Calculate y1+y2y_1 + y_2: Now we need to find the corresponding yy values for each xx by substituting x1x_1 and x2x_2 into either of the original equations. We'll use the simpler equation y=4x+2y = 4x + 2. For x1=53x_1 = \frac{5}{3}: y1=4(53)+2y_1 = 4(\frac{5}{3}) + 2 y1=203+2y_1 = \frac{20}{3} + 2 y1=203+63y_1 = \frac{20}{3} + \frac{6}{3} yy00For yy11: yy22 yy33 yy44Now we can find y1+y2y_1 + y_2: yy66 yy77

More problems from Compare linear, exponential, and quadratic growth