Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(x^((7)/(4))*x^(4))^(4)
Which of the following expressions is equivalent to the given expression assuming 
x is nonzero?
Choose 1 answer:
(A) 
x^((39)/(4))
(B) 
x^(11)
(C) 
x^(23)
(D) 
x^(28)

(x74x4)4 \left(x^{\frac{7}{4}} \cdot x^{4}\right)^{4} \newlineWhich of the following expressions is equivalent to the given expression assuming x x is nonzero?\newlineChoose 11 answer:\newline(A) x394 x \frac{39}{4} \newline(B) x11 x^{11} \newline(C) x23 x^{23} \newline(D) x28 x^{28}

Full solution

Q. (x74x4)4 \left(x^{\frac{7}{4}} \cdot x^{4}\right)^{4} \newlineWhich of the following expressions is equivalent to the given expression assuming x x is nonzero?\newlineChoose 11 answer:\newline(A) x394 x \frac{39}{4} \newline(B) x11 x^{11} \newline(C) x23 x^{23} \newline(D) x28 x^{28}
  1. Simplify inside the parentheses: First, let's simplify the inside of the parentheses by using the property of exponents that states when you multiply powers with the same base, you add the exponents.\newlineThe expression inside the parentheses is x(74)x4x^{\left(\frac{7}{4}\right)} \cdot x^{4}.\newlineWe add the exponents: (74)+4\left(\frac{7}{4}\right) + 4.\newlineSince 44 can be written as 164\frac{16}{4}, we have (74)+(164)=(234)\left(\frac{7}{4}\right) + \left(\frac{16}{4}\right) = \left(\frac{23}{4}\right).\newlineSo, the expression inside the parentheses simplifies to x(234)x^{\left(\frac{23}{4}\right)}.
  2. Apply the exponent outside the parentheses: Now, we need to apply the exponent outside the parentheses, which is 44, to the simplified expression inside the parentheses.\newlineUsing the property of exponents that states when you raise a power to a power, you multiply the exponents, we have (x(234))4(x^{(\frac{23}{4})})^4.\newlineWe multiply the exponents: (234)4(\frac{23}{4}) \cdot 4.\newlineThe 44s cancel out, leaving us with 231=2323 \cdot 1 = 23.\newlineSo, the expression simplifies to x23x^{23}.
  3. Compare with answer choices: We can now compare the simplified expression to the answer choices.\newlineThe expression we found is x23x^{23}, which matches answer choice (C).

More problems from Compare linear and exponential growth