Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(x^(3)+9x^(2))/(x^(3))
Which expression is equivalent to the given expression for all 
x > 1 ?
Choose 1 answer:
(A) 
9x^(2)
(B) 
1+9x^(2)
(c) 
(x+9)/(x)
(D) 
(1+9x)/(x)

x3+9x2x3 \frac{x^{3}+9 x^{2}}{x^{3}} \newlineWhich expression is equivalent to the given expression for all x>1 ?\newlineChoose 11 answer:\newline(A) 9x2 9 x^{2} \newline(B) 1+9x2 1+9 x^{2} \newline(C) x+9x \frac{x+9}{x} \newline(D) 1+9xx \frac{1+9 x}{x}

Full solution

Q. x3+9x2x3 \frac{x^{3}+9 x^{2}}{x^{3}} \newlineWhich expression is equivalent to the given expression for all x>1 x>1 ?\newlineChoose 11 answer:\newline(A) 9x2 9 x^{2} \newline(B) 1+9x2 1+9 x^{2} \newline(C) x+9x \frac{x+9}{x} \newline(D) 1+9xx \frac{1+9 x}{x}
  1. Divide x3x^{3}: We have the expression x3+9x2x3\frac{x^{3}+9x^{2}}{x^{3}}. To simplify this expression, we can divide each term in the numerator by the term in the denominator.
  2. Divide 9x29x^{2}: Divide x3x^{3} by x3x^{3} to get 11.
  3. Combine results: Divide 9x29x^{2} by x3x^{3} to get 9x\frac{9}{x}.
  4. Match with option: Combine the results from the previous steps to get the simplified expression: 1+9x.1 + \frac{9}{x}.
  5. Match with option: Combine the results from the previous steps to get the simplified expression: 1+9x1 + \frac{9}{x}.Now we need to match our simplified expression with one of the given options. The expression 1+9x1 + \frac{9}{x} is equivalent to (1+9)xx\frac{(1+9)x}{x}, which is option (D).

More problems from Compare linear and exponential growth