Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[x_(1)+(x_(1)*y)=12],[x_(1)+(x_(1)*y^(2))=30]:}

x1+(x1y)=12x1+(x1y2)=30 \begin{array}{l}x_{1}+\left(x_{1} \cdot y\right)=12 \\ x_{1}+\left(x_{1} \cdot y^{2}\right)=30\end{array}

Full solution

Q. x1+(x1y)=12x1+(x1y2)=30 \begin{array}{l}x_{1}+\left(x_{1} \cdot y\right)=12 \\ x_{1}+\left(x_{1} \cdot y^{2}\right)=30\end{array}
  1. Factor Equations: Let's denote x1 x_1 as x x for simplicity. We have the system of equations:\newline{x+xy=12x+xy2=30 \begin{cases} x + xy = 12 \\ x + xy^2 = 30 \end{cases} \newlineWe can factor out x x from both equations:\newline{x(1+y)=12x(1+y2)=30 \begin{cases} x(1 + y) = 12 \\ x(1 + y^2) = 30 \end{cases}
  2. Eliminate x: Now, let's divide the second equation by the first equation to eliminate x x :\newlinex(1+y2)x(1+y)=3012 \frac{x(1 + y^2)}{x(1 + y)} = \frac{30}{12} \newlineSimplifying, we get:\newline1+y21+y=52 \frac{1 + y^2}{1 + y} = \frac{5}{2}
  3. Cross-Multiply for y: Next, we cross-multiply to solve for y y :\newline2(1+y2)=5(1+y) 2(1 + y^2) = 5(1 + y) \newlineExpanding both sides, we get:\newline2+2y2=5+5y 2 + 2y^2 = 5 + 5y
  4. Form Quadratic Equation: Now, let's rearrange the terms to form a quadratic equation:\newline2y25y+25=0 2y^2 - 5y + 2 - 5 = 0 \newlineSimplifying, we get:\newline2y25y3=0 2y^2 - 5y - 3 = 0
  5. Solve Quadratic Equation: We can solve this quadratic equation by factoring, completing the square, or using the quadratic formula. Let's try to factor it:\newline(2y+1)(y3)=0 (2y + 1)(y - 3) = 0 \newlineSetting each factor equal to zero gives us:\newline2y+1=0ory3=0 2y + 1 = 0 \quad \text{or} \quad y - 3 = 0
  6. Check Solutions: Solving for y y , we find two possible solutions:\newliney=12ory=3 y = -\frac{1}{2} \quad \text{or} \quad y = 3
  7. Check Solutions: Solving for y y , we find two possible solutions:\newliney=12ory=3 y = -\frac{1}{2} \quad \text{or} \quad y = 3 We need to check which value of y y satisfies both original equations. Let's substitute y=12 y = -\frac{1}{2} into the first equation:\newlinex+x(12)=12 x + x\left(-\frac{1}{2}\right) = 12 \newlineSimplifying, we get:\newlinex12x=12 x - \frac{1}{2}x = 12 \newline12x=12 \frac{1}{2}x = 12
  8. Check Solutions: Solving for y y , we find two possible solutions:\newliney=12ory=3 y = -\frac{1}{2} \quad \text{or} \quad y = 3 We need to check which value of y y satisfies both original equations. Let's substitute y=12 y = -\frac{1}{2} into the first equation:\newlinex+x(12)=12 x + x\left(-\frac{1}{2}\right) = 12 \newlineSimplifying, we get:\newlinex12x=12 x - \frac{1}{2}x = 12 \newline12x=12 \frac{1}{2}x = 12 Multiplying both sides by 22 to solve for x x , we get:\newlinex=24 x = 24 \newlineNow let's check if this x x value works with y=12 y = -\frac{1}{2} in the second equation:\newline24+24(12)2=30 24 + 24\left(-\frac{1}{2}\right)^2 = 30 \newlineSimplifying, we get:\newline24+24(14)=30 24 + 24\left(\frac{1}{4}\right) = 30 \newline24+6=30 24 + 6 = 30 \newlineThis is true, so y=12 y = -\frac{1}{2} and x=24 x = 24 is a solution.
  9. Check Solutions: Solving for y y , we find two possible solutions:\newliney=12ory=3 y = -\frac{1}{2} \quad \text{or} \quad y = 3 We need to check which value of y y satisfies both original equations. Let's substitute y=12 y = -\frac{1}{2} into the first equation:\newlinex+x(12)=12 x + x\left(-\frac{1}{2}\right) = 12 \newlineSimplifying, we get:\newlinex12x=12 x - \frac{1}{2}x = 12 \newline12x=12 \frac{1}{2}x = 12 Multiplying both sides by 22 to solve for x x , we get:\newlinex=24 x = 24 \newlineNow let's check if this x x value works with y=12 y = -\frac{1}{2} in the second equation:\newline24+24(12)2=30 24 + 24\left(-\frac{1}{2}\right)^2 = 30 \newlineSimplifying, we get:\newline24+24(14)=30 24 + 24\left(\frac{1}{4}\right) = 30 \newline24+6=30 24 + 6 = 30 \newlineThis is true, so y=12 y = -\frac{1}{2} and x=24 x = 24 is a solution.Now let's check the other possible value for y y , which is y=3 y = 3 , using the first equation:\newlinex+x(3)=12 x + x(3) = 12 \newlineSimplifying, we get:\newline4x=12 4x = 12 \newlinex+x(12)=12 x + x\left(-\frac{1}{2}\right) = 12 00\newlineNow let's check if this x x value works with y=3 y = 3 in the second equation:\newlinex+x(12)=12 x + x\left(-\frac{1}{2}\right) = 12 11\newlineSimplifying, we get:\newlinex+x(12)=12 x + x\left(-\frac{1}{2}\right) = 12 22\newlinex+x(12)=12 x + x\left(-\frac{1}{2}\right) = 12 33\newlineThis is also true, so y=3 y = 3 and y y 33 is another solution.

More problems from Operations with rational exponents