Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(v+(1)/(5))^(2)-9=0
What is the sum of the solutions to the given equation?
Choose 1 answer:
(A) 
-(3)/(5)
(B) 
-(2)/(5)
(C) 
-(1)/(5)
(D) 0

(v+15)29=0 \left(v+\frac{1}{5}\right)^{2}-9=0 \newlineWhat is the sum of the solutions to the given equation?\newlineChoose 11 answer:\newline(A) 35 -\frac{3}{5} \newline(B) 25 -\frac{2}{5} \newline(C) 15 -\frac{1}{5} \newline(D) 00

Full solution

Q. (v+15)29=0 \left(v+\frac{1}{5}\right)^{2}-9=0 \newlineWhat is the sum of the solutions to the given equation?\newlineChoose 11 answer:\newline(A) 35 -\frac{3}{5} \newline(B) 25 -\frac{2}{5} \newline(C) 15 -\frac{1}{5} \newline(D) 00
  1. Isolate squared term: First, let's isolate the squared term by adding 99 to both sides of the equation.\newline(v+15)29+9=0+9(v + \frac{1}{5})^2 - 9 + 9 = 0 + 9\newline(v+15)2=9(v + \frac{1}{5})^2 = 9
  2. Take square root: Now, take the square root of both sides to solve for vv.(v+15)2=±9\sqrt{(v + \frac{1}{5})^2} = \pm\sqrt{9}v+15=±3v + \frac{1}{5} = \pm3
  3. Subtract to isolate vv: Next, subtract 15\frac{1}{5} from both sides to get vv by itself.\newlinev+1515=±315v + \frac{1}{5} - \frac{1}{5} = \pm3 - \frac{1}{5}\newlinev=±315v = \pm3 - \frac{1}{5}
  4. Calculate possible values: Now, calculate the two possible values for vv.v=315v = 3 - \frac{1}{5} and v=315v = -3 - \frac{1}{5}v=2.8v = 2.8 and v=3.2v = -3.2

More problems from Compare linear and exponential growth