Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(t+(1)/(3))(t+(2)/(3))=0
What are the solutions to the given equation?
Choose 1 answer:
(A) 
t=-(2)/(3) and 
t=-(1)/(3)
(B) 
t=-(2)/(3) and 
t=(2)/(3)
(C) 
t=-(1)/(3) and 
t=(1)/(3)
(D) 
t=(1)/(3) and 
t=(2)/(3)

(t+13)(t+23)=0 \left(t+\frac{1}{3}\right)\left(t+\frac{2}{3}\right)=0 \newlineWhat are the solutions to the given equation?\newlineChoose 11 answer:\newline(A) t=23 t=-\frac{2}{3} and t=13 t=-\frac{1}{3} \newline(B) t=23 t=-\frac{2}{3} and t=23 t=\frac{2}{3} \newline(C) t=13 t=-\frac{1}{3} and t=13 t=\frac{1}{3} \newline(D) t=13 t=\frac{1}{3} and t=23 t=\frac{2}{3}

Full solution

Q. (t+13)(t+23)=0 \left(t+\frac{1}{3}\right)\left(t+\frac{2}{3}\right)=0 \newlineWhat are the solutions to the given equation?\newlineChoose 11 answer:\newline(A) t=23 t=-\frac{2}{3} and t=13 t=-\frac{1}{3} \newline(B) t=23 t=-\frac{2}{3} and t=23 t=\frac{2}{3} \newline(C) t=13 t=-\frac{1}{3} and t=13 t=\frac{1}{3} \newline(D) t=13 t=\frac{1}{3} and t=23 t=\frac{2}{3}
  1. Given Equation: We are given the equation (t+13)(t+23)=0(t+\frac{1}{3})(t+\frac{2}{3})=0. To find the solutions, we will use the zero product property, which states that if the product of two factors is 00, then at least one of the factors must be 00.
  2. First Factor: Set the first factor equal to zero: t+13=0t + \frac{1}{3} = 0. Solve for tt by subtracting 13\frac{1}{3} from both sides of the equation.\newlinet=13t = -\frac{1}{3}
  3. Second Factor: Set the second factor equal to zero: t+23=0t + \frac{2}{3} = 0. Solve for tt by subtracting 23\frac{2}{3} from both sides of the equation.\newlinet=23t = -\frac{2}{3}
  4. Solutions: We have found two solutions to the equation: t=(13)t = -\left(\frac{1}{3}\right) and t=(23)t = -\left(\frac{2}{3}\right). These solutions correspond to choice (A)(A).

More problems from Compare linear and exponential growth