Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

 : solve for x,y
{[(x-y)^(2)+4=3y-5x+2sqrt()(x+1)(y-1)],[(3xy-5y+6x+11)/(sqrt(x^(3)+1))=5]:}

solve for x,yx,y\newline{[(xy)2+4=3y5x+2(x+1)(y1)],[3xy5y+6x+11x3+1=5]}\left\{\left[(x-y)^{2}+4=3y-5x+2\sqrt{(x+1)(y-1)}\right],\left[\frac{3xy-5y+6x+11}{\sqrt{x^{3}+1}}=5\right]\right\}

Full solution

Q. solve for x,yx,y\newline{[(xy)2+4=3y5x+2(x+1)(y1)],[3xy5y+6x+11x3+1=5]}\left\{\left[(x-y)^{2}+4=3y-5x+2\sqrt{(x+1)(y-1)}\right],\left[\frac{3xy-5y+6x+11}{\sqrt{x^{3}+1}}=5\right]\right\}
  1. Analyze and Simplify: Step 11: Analyze and simplify the first equation.\newlineEquation: (xy)2+4=3y5x+2(x+1)(y1)(x-y)^2 + 4 = 3y - 5x + 2\sqrt{(x+1)(y-1)}\newlineRewrite without the square root for simplicity:\newline(xy)2+4=3y5x+2(x+1)(y1)(x-y)^2 + 4 = 3y - 5x + 2\sqrt{(x+1)(y-1)}
  2. Isolate Terms: Step 22: Attempt to isolate terms in the first equation.\newlineExpand (xy)2(x-y)^2:\newlinex22xy+y2+4=3y5x+2(x+1)(y1)x^2 - 2xy + y^2 + 4 = 3y - 5x + 2\sqrt{(x+1)(y-1)}
  3. Simplify Second Equation: Step 33: Analyze and simplify the second equation.\newlineEquation: (3xy5y+6x+11)/x3+1=5(3xy - 5y + 6x + 11) / \sqrt{x^3 + 1} = 5\newlineMultiply both sides by x3+1\sqrt{x^3 + 1} to clear the denominator:\newline3xy5y+6x+11=5x3+13xy - 5y + 6x + 11 = 5\sqrt{x^3 + 1}
  4. Solve Using Methods: Step 44: Attempt to solve the system using substitution or elimination.\newlineThis step involves complex algebraic manipulation or numerical methods, which might be challenging without specific values or further simplification.

More problems from Compare linear, exponential, and quadratic growth