Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the integral: sin(logx)dx \int \sin(\log x) \, dx solution

Full solution

Q. Find the integral: sin(logx)dx \int \sin(\log x) \, dx solution
  1. Use substitution: Use substitution. Let u=log(x) u = \log(x) , then du=1xdx du = \frac{1}{x} dx or dx=xdu dx = x du .
  2. Substitute and integrate: Since x=eu x = e^u , substitute x x and dx dx in the integral.\newlinesin(log(x))dx=sin(u)eudu \int \sin(\log(x)) dx = \int \sin(u) e^u du
  3. Integration by parts: Use integration by parts. Let v=sin(u) v = \sin(u) and dw=eudu dw = e^u du . Then dv=cos(u)du dv = \cos(u) du and w=eu w = e^u .
  4. Apply integration by parts: Apply the integration by parts formula vdw=vwwdv \int v dw = vw - \int w dv .\newlinesin(u)eudu=sin(u)eueucos(u)du \int \sin(u) e^u du = \sin(u) e^u - \int e^u \cos(u) du
  5. Use integration by parts again: Use integration by parts again on eucos(u)du \int e^u \cos(u) du . Let v=cos(u) v = \cos(u) and dw=eudu dw = e^u du . Then dv=sin(u)du dv = -\sin(u) du and w=eu w = e^u .
  6. Combine results: Apply the integration by parts formula again.\newlineeucos(u)du=cos(u)eueu(sin(u))du \int e^u \cos(u) du = \cos(u) e^u - \int e^u (-\sin(u)) du \newline=cos(u)eu+eusin(u)du = \cos(u) e^u + \int e^u \sin(u) du
  7. Solve for integral: Combine the results from Steps 44 and 66.\newlinesin(u)eudu=sin(u)eu(cos(u)eu+eusin(u)du) \int \sin(u) e^u du = \sin(u) e^u - (\cos(u) e^u + \int e^u \sin(u) du) \newline=sin(u)eucos(u)eueusin(u)du = \sin(u) e^u - \cos(u) e^u - \int e^u \sin(u) du
  8. Substitute back: Solve for eusin(u)du \int e^u \sin(u) du .\newlineeusin(u)du+eusin(u)du=sin(u)eucos(u)eu \int e^u \sin(u) du + \int e^u \sin(u) du = \sin(u) e^u - \cos(u) e^u \newline2eusin(u)du=sin(u)eucos(u)eu 2 \int e^u \sin(u) du = \sin(u) e^u - \cos(u) e^u \newlineeusin(u)du=12(sin(u)eucos(u)eu) \int e^u \sin(u) du = \frac{1}{2} (\sin(u) e^u - \cos(u) e^u)
  9. Substitute back: Solve for eusin(u)du \int e^u \sin(u) du .\newlineeusin(u)du+eusin(u)du=sin(u)eucos(u)eu \int e^u \sin(u) du + \int e^u \sin(u) du = \sin(u) e^u - \cos(u) e^u \newline2eusin(u)du=sin(u)eucos(u)eu 2 \int e^u \sin(u) du = \sin(u) e^u - \cos(u) e^u \newlineeusin(u)du=12(sin(u)eucos(u)eu) \int e^u \sin(u) du = \frac{1}{2} (\sin(u) e^u - \cos(u) e^u) Substitute back u=log(x) u = \log(x) .\newlinesin(log(x))dx=12(sin(log(x))xcos(log(x))x)+C \int \sin(\log(x)) dx = \frac{1}{2} (\sin(\log(x)) x - \cos(\log(x)) x) + C

More problems from Csc, sec, and cot of special angles