Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(((l^(5)m^(4)n^(6))/(pq)))/(((l^(5)m^(3)n^(6))/(p^(2)q^(2))))
Which expression is equivalent to the given quotient for all 
m,n,p,q > 0 ?
Choose 1 answer:
(A) 
(1)/(mpq)
(B) 
mpq
(c) 
(l^(10)m^(7)n^(12))/(p^(3)q^(3))
(D) 1

(l5m4n6pq)(l5m3n6p2q2) \frac{\left(\frac{l^{5} m^{4} n^{6}}{p q}\right)}{\left(\frac{l^{5} m^{3} n^{6}}{p^{2} q^{2}}\right)} \newlineWhich expression is equivalent to the given quotient for all m, n, p, q>0 ?\newlineChoose 11 answer:\newline(A) 1mpq \frac{1}{m p q} \newline(B) mpq m p q \newline(C) l10m7n12p3q3 \frac{l^{10} m^{7} n^{12}}{p^{3} q^{3}} \newline(D) 11

Full solution

Q. (l5m4n6pq)(l5m3n6p2q2) \frac{\left(\frac{l^{5} m^{4} n^{6}}{p q}\right)}{\left(\frac{l^{5} m^{3} n^{6}}{p^{2} q^{2}}\right)} \newlineWhich expression is equivalent to the given quotient for all m,n,p,q>0 m, n, p, q>0 ?\newlineChoose 11 answer:\newline(A) 1mpq \frac{1}{m p q} \newline(B) mpq m p q \newline(C) l10m7n12p3q3 \frac{l^{10} m^{7} n^{12}}{p^{3} q^{3}} \newline(D) 11
  1. Given expression: We are given the expression:\newline(l5m4n6pq)(l5m3n6p2q2) \frac{\left(\frac{l^5m^4n^6}{pq}\right)}{\left(\frac{l^5m^3n^6}{p^2q^2}\right)} \newlineWe need to simplify this complex fraction to find an equivalent expression.
  2. Multiply by reciprocal: To simplify a complex fraction, we can multiply the numerator and the denominator by the reciprocal of the denominator. In this case, we multiply by p2q2l5m3n6\frac{p^2q^2}{l^5m^3n^6}.
  3. Expression after multiplication: The expression becomes:\newline(l5m4n6pq)×(p2q2l5m3n6) \left(\frac{l^5m^4n^6}{pq}\right) \times \left(\frac{p^2q^2}{l^5m^3n^6}\right)
  4. Multiply numerators and denominators: Now we multiply the numerators together and the denominators together:\newlinel5m4n6×p2q2pq×l5m3n6 \frac{l^5m^4n^6 \times p^2q^2}{pq \times l^5m^3n^6}
  5. Cancel out common terms: We can cancel out the common terms in the numerator and the denominator:\newlinel5+0m43n6+0p21q211 \frac{l^{5+0}m^{4-3}n^{6+0}p^{2-1}q^{2-1}}{1}
  6. Simplify exponents: Simplify the exponents:\newlinel5m1n6p1q11 \frac{l^5m^1n^6p^1q^1}{1}
  7. Final simplified expression: Since dividing by 11 does not change the value, we can write the simplified expression as:\newlinel5m1n6pq l^5m^1n^6pq
  8. Check steps: Looking at the answer choices, none of them match our simplified expression exactly. We must have made a mistake in our simplification process. Let's go back and check our steps.

More problems from Compare linear and exponential growth