Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

((j^(15))/(8))^((2)/(3))
Which of the following expressions is equivalent to the given expression?
Choose 1 answer:
(A) 
(j^(10))/(4)
(B) 
(j^(30))/(512)
(C) 
(j^(10))/(8)
(D) 
(j^(30))/(8)

(j158)23 \left(\frac{j^{15}}{8}\right)^{\frac{2}{3}} \newlineWhich of the following expressions is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) j104 \frac{j^{10}}{4} \newline(B) j30512 \frac{j^{30}}{512} \newline(C) j108 \frac{j^{10}}{8} \newline(D) j308 \frac{j^{30}}{8}

Full solution

Q. (j158)23 \left(\frac{j^{15}}{8}\right)^{\frac{2}{3}} \newlineWhich of the following expressions is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) j104 \frac{j^{10}}{4} \newline(B) j30512 \frac{j^{30}}{512} \newline(C) j108 \frac{j^{10}}{8} \newline(D) j308 \frac{j^{30}}{8}
  1. Understand expression and properties: Understand the given expression and the properties of exponents that can be applied.\newlineThe given expression is (j158)23\left(\frac{j^{15}}{8}\right)^{\frac{2}{3}}. We can apply the property of exponents that states (amn)=(am)1n\left(a^{\frac{m}{n}}\right) = \left(a^m\right)^{\frac{1}{n}} or the nnth root of ama^m.
  2. Apply exponent rule: Apply the exponent rule to the given expression.\newlineWe can rewrite the expression as (j15(23))/(823)(j^{15 \cdot (\frac{2}{3})})/(8^{\frac{2}{3}}). This simplifies the exponentiation by distributing the (23)(\frac{2}{3}) exponent to both the numerator and the denominator.
  3. Calculate new exponents: Calculate the new exponents for both the numerator and the denominator.\newlineFor the numerator: 15×(23)=1015 \times \left(\frac{2}{3}\right) = 10.\newlineFor the denominator: 8238^{\frac{2}{3}} is the cube root of 88 squared, which is 222^2 since 88 is 232^3. So, 823=22=48^{\frac{2}{3}} = 2^2 = 4.
  4. Rewrite expression with new exponents: Rewrite the expression with the new exponents.\newlineThe expression now becomes j104\frac{j^{10}}{4}.
  5. Match simplified expression with choices: Match the simplified expression with the given choices.\newlineThe expression (j10)/4(j^{10})/4 corresponds to choice (A) (j10)/(4)(j^{10})/(4).

More problems from Compare linear and exponential growth