Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[g(x)=9+(5)/(4)x],[h(x)=10 x-28]:}
Write 
(g@h)(x) as an expression in terms of 
x.

(g@h)(x)=

g(x)=9+54xh(x)=10x28 \begin{array}{l} g(x)=9+\frac{5}{4} x \\ h(x)=10 x-28 \end{array} \newlineWrite (gh)(x) (g \circ h)(x) as an expression in terms of x x .\newline(gh)(x)= (g \circ h)(x)=

Full solution

Q. g(x)=9+54xh(x)=10x28 \begin{array}{l} g(x)=9+\frac{5}{4} x \\ h(x)=10 x-28 \end{array} \newlineWrite (gh)(x) (g \circ h)(x) as an expression in terms of x x .\newline(gh)(x)= (g \circ h)(x)=
  1. Substitute Functions: To find the composition of functions (gh)(x)(g \circ h)(x), we need to substitute the function h(x)h(x) into the function g(x)g(x). This means we will replace every instance of xx in g(x)g(x) with the expression that defines h(x)h(x).
  2. Write Functions: First, let's write down the functions g(x)g(x) and h(x)h(x) for clarity:\newlineg(x)=9+54xg(x) = 9 + \frac{5}{4}x\newlineh(x)=10x28h(x) = 10x - 28\newlineNow, we will substitute h(x)h(x) into g(x)g(x).
  3. Distribute and Simplify: Substitute h(x)h(x) into g(x)g(x):
    (g@h)(x)=g(h(x))=9+(54)(h(x))(g@h)(x) = g(h(x)) = 9 + \left(\frac{5}{4}\right)(h(x))
    Now, replace h(x)h(x) with its expression:
    (g@h)(x)=9+(54)(10x28)(g@h)(x) = 9 + \left(\frac{5}{4}\right)(10x - 28)
  4. Combine Terms: Next, distribute the (5/4)(5/4) across the terms in the parentheses: (g@h)(x)=9+5410x5428(g@h)(x) = 9 + \frac{5}{4}\cdot 10x - \frac{5}{4}\cdot 28
  5. Combine Terms: Next, distribute the (5/4)(5/4) across the terms in the parentheses:\newline(g@h)(x)=9+(5/4)10x(5/4)28(g@h)(x) = 9 + (5/4)\cdot 10x - (5/4)\cdot 28 Simplify the expression by multiplying the constants:\newline(g@h)(x)=9+(50/4)x(140/4)(g@h)(x) = 9 + (50/4)x - (140/4)\newline(g@h)(x)=9+(50/4)x35(g@h)(x) = 9 + (50/4)x - 35
  6. Combine Terms: Next, distribute the (5/4)(5/4) across the terms in the parentheses:\newline(g@h)(x)=9+(5/4)10x(5/4)28(g@h)(x) = 9 + (5/4)\cdot 10x - (5/4)\cdot 28 Simplify the expression by multiplying the constants:\newline(g@h)(x)=9+(50/4)x(140/4)(g@h)(x) = 9 + (50/4)x - (140/4)\newline(g@h)(x)=9+(50/4)x35(g@h)(x) = 9 + (50/4)x - 35 Combine the constant terms:\newline(g@h)(x)=935+(50/4)x(g@h)(x) = 9 - 35 + (50/4)x\newline(g@h)(x)=26+(50/4)x(g@h)(x) = -26 + (50/4)x

More problems from Compare linear and exponential growth