Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[g(x)=3x-7],[h(x)=2-g(x)]:}
The functions 
g and 
h are defined. What is the value of 
h(1) ?
Choose 1 answer:
(A) 6
(B) 1
(c) -2
(D) -6

g(x)=3x7h(x)=2g(x) \begin{array}{l} g(x)=3 x-7 \\ h(x)=2-g(x) \end{array} \newlineThe functions g g and h h are defined. What is the value of h(1) h(1) ?\newlineChoose 11 answer:\newline(A) 66\newline(B) 11\newline(C) 2-2\newline(D) 6-6

Full solution

Q. g(x)=3x7h(x)=2g(x) \begin{array}{l} g(x)=3 x-7 \\ h(x)=2-g(x) \end{array} \newlineThe functions g g and h h are defined. What is the value of h(1) h(1) ?\newlineChoose 11 answer:\newline(A) 66\newline(B) 11\newline(C) 2-2\newline(D) 6-6
  1. Find g(1)g(1): First, we need to find the value of g(1)g(1) by substituting xx with 11 in the function g(x)=3x7g(x) = 3x - 7.\newlineCalculation: g(1)=3(1)7=37=4g(1) = 3(1) - 7 = 3 - 7 = -4
  2. Calculate g(1)g(1): Now, we use the value of g(1)g(1) to find h(1)h(1) by substituting g(1)g(1) into the function h(x)=2g(x)h(x) = 2 - g(x).\newlineCalculation: h(1)=2g(1)=2(4)=2+4=6h(1) = 2 - g(1) = 2 - (-4) = 2 + 4 = 6

More problems from Compare linear and exponential growth