Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[f(x)=3x^(2)+4x-2],[g(x)=7x^(2)-bx+3]:}
If

f(x)-g(x)=-4x^(2)+6x-5
for all values of 
x where 
b is a constant, then what is the value of 
b ?
Choose 1 answer:
(A) -10
(B) -2
(c) 2
(D) 10

f(x)=3x2+4x2g(x)=7x2bx+3 \begin{array}{l} f(x)=3 x^{2}+4 x-2 \\ g(x)=7 x^{2}-b x+3 \end{array} \newlineIf\newlinef(x)g(x)=4x2+6x5 f(x)-g(x)=-4 x^{2}+6 x-5 \newlinefor all values of x x where b b is a constant, then what is the value of b b ?\newlineChoose 11 answer:\newline(A) 10-10\newline(B) 2-2\newline(C) 22\newline(D) 1010

Full solution

Q. f(x)=3x2+4x2g(x)=7x2bx+3 \begin{array}{l} f(x)=3 x^{2}+4 x-2 \\ g(x)=7 x^{2}-b x+3 \end{array} \newlineIf\newlinef(x)g(x)=4x2+6x5 f(x)-g(x)=-4 x^{2}+6 x-5 \newlinefor all values of x x where b b is a constant, then what is the value of b b ?\newlineChoose 11 answer:\newline(A) 10-10\newline(B) 2-2\newline(C) 22\newline(D) 1010
  1. Given Functions: We are given two functions:\newlinef(x)=3x2+4x2f(x) = 3x^2 + 4x - 2\newlineg(x)=7x2bx+3g(x) = 7x^2 - bx + 3\newlineAnd we know that:\newlinef(x)g(x)=4x2+6x5f(x) - g(x) = -4x^2 + 6x - 5\newlineTo find the value of bb, we need to subtract g(x)g(x) from f(x)f(x) and compare the result to the given expression for f(x)g(x)f(x) - g(x).
  2. Subtracting f(x)f(x) and g(x)g(x): Let's perform the subtraction:\newlinef(x)g(x)=(3x2+4x2)(7x2bx+3)f(x) - g(x) = (3x^2 + 4x - 2) - (7x^2 - bx + 3)\newlineSimplify the expression by distributing the negative sign and combining like terms:\newlinef(x)g(x)=3x2+4x27x2+bx3f(x) - g(x) = 3x^2 + 4x - 2 - 7x^2 + bx - 3\newlinef(x)g(x)=4x2+(4+b)x5f(x) - g(x) = -4x^2 + (4 + b)x - 5
  3. Comparing Coefficients: Now we compare the coefficients of the resulting expression with the given expression for f(x)g(x)f(x) - g(x):4x2+(4+b)x5=4x2+6x5-4x^2 + (4 + b)x - 5 = -4x^2 + 6x - 5The coefficients of x2x^2 and the constant terms are already equal on both sides, so we only need to compare the coefficients of xx:4+b=64 + b = 6
  4. Solving for b: To find the value of b, we solve the equation:\newline4+b=64 + b = 6\newlineSubtract 44 from both sides:\newlineb=64b = 6 - 4\newlineb=2b = 2

More problems from Compare linear and exponential growth