Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[f(x)=3*2^(x)],[h(x)=2x-7]:}
Evaluate.

h(f(2))=

f(x)=32xh(x)=2x7 \begin{array}{l} f(x)=3 \cdot 2^{x} \\ h(x)=2 x-7 \end{array} \newlineEvaluate.\newlineh(f(2))= h(f(2))=

Full solution

Q. f(x)=32xh(x)=2x7 \begin{array}{l} f(x)=3 \cdot 2^{x} \\ h(x)=2 x-7 \end{array} \newlineEvaluate.\newlineh(f(2))= h(f(2))=
  1. Evaluate f(2)f(2): First, we need to evaluate f(2)f(2) using the function f(x)=32xf(x) = 3\cdot2^x.\newlineSubstitute 22 for xx in f(x)=32xf(x) = 3\cdot2^x.\newlinef(2)=322f(2) = 3\cdot2^2
  2. Calculate f(2)f(2): Now, calculate 3×223 \times 2^2.\newline3×22=3×43 \times 2^2 = 3 \times 4\newline3×22=123 \times 2^2 = 12
  3. Evaluate h(f(2))h(f(2)): With f(2)f(2) found to be 1212, we can now evaluate h(f(2))h(f(2)) using the function h(x)=2x7h(x) = 2x - 7.\newlineSubstitute 1212 for xx in h(x)=2x7h(x) = 2x - 7.\newlineh(12)=2×127h(12) = 2\times12 - 7
  4. Calculate h(f(2))h(f(2)): Finally, calculate 2×1272\times12 - 7.2×127=2472\times12 - 7 = 24 - 72×127=172\times12 - 7 = 17

More problems from Compare linear and exponential growth