Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[f(a)=(a+2)^(2)],[g(a)=5a+4]:}
Evaluate.

g(f(-2))=

f(a)=(a+2)2g(a)=5a+4 \begin{array}{l} f(a)=(a+2)^{2} \\ g(a)=5 a+4 \end{array} \newlineEvaluate.\newlineg(f(2))= g(f(-2))=

Full solution

Q. f(a)=(a+2)2g(a)=5a+4 \begin{array}{l} f(a)=(a+2)^{2} \\ g(a)=5 a+4 \end{array} \newlineEvaluate.\newlineg(f(2))= g(f(-2))=
  1. Find f(2)f(-2): First, let's find f(2)f(-2).
    f(a)=(a+2)2f(a) = (a + 2)^2
    f(2)=(2+2)2f(-2) = (-2 + 2)^2
    f(2)=(0)2f(-2) = (0)^2
    f(2)=0f(-2) = 0
  2. Plug into g(a)g(a): Now, let's plug f(2)f(-2) into g(a)g(a).\newlineg(a)=5a+4g(a) = 5a + 4\newlineg(f(2))=5×f(2)+4g(f(-2)) = 5 \times f(-2) + 4\newlineg(f(2))=5×0+4g(f(-2)) = 5 \times 0 + 4\newlineg(f(2))=0+4g(f(-2)) = 0 + 4\newlineg(f(2))=4g(f(-2)) = 4

More problems from Compare linear and exponential growth