Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[F=[[1,2],[-2,3]]" and "],[E=[[0,-1,5],[3,2,1]]]:}
Let 
H=FE. Find 
H.

H=

F=[1amp;22amp;3] and E=[0amp;1amp;53amp;2amp;1] \begin{array}{l} F=\left[\begin{array}{rr} 1 & 2 \\ -2 & 3 \end{array}\right] \text { and } E=\left[\begin{array}{rrr} 0 & -1 & 5 \\ 3 & 2 & 1 \end{array}\right] \end{array} \newlineLet H=FE \mathrm{H}=\mathrm{FE} . Find H \mathrm{H} .\newlineH= \mathbf{H}=

Full solution

Q. F=[1223] and E=[015321] \begin{array}{l} F=\left[\begin{array}{rr} 1 & 2 \\ -2 & 3 \end{array}\right] \text { and } E=\left[\begin{array}{rrr} 0 & -1 & 5 \\ 3 & 2 & 1 \end{array}\right] \end{array} \newlineLet H=FE \mathrm{H}=\mathrm{FE} . Find H \mathrm{H} .\newlineH= \mathbf{H}=
  1. Matrix Multiplication: To find the matrix HH which is the product of matrices FF and EE, we need to perform matrix multiplication. The matrix FF is a 2×22 \times 2 matrix and the matrix EE is a 2×32 \times 3 matrix. The product of a 2×22 \times 2 matrix and a 2×32 \times 3 matrix will result in a 2×32 \times 3 matrix. Let's denote the elements of matrix HH as FF11, where FF22 is the row index and FF33 is the column index. We will calculate each element of HH using the formula for matrix multiplication: FF55.
  2. Calculate h11h_{11}: First, we calculate the element h11h_{11} of matrix HH. This is the element in the first row and first column of the resulting matrix. Using the formula for matrix multiplication, we have:\newlineh11=f11×e11+f12×e21h_{11} = f_{11} \times e_{11} + f_{12} \times e_{21}\newlineh11=1×0+2×3h_{11} = 1 \times 0 + 2 \times 3\newlineh11=0+6h_{11} = 0 + 6\newlineh11=6h_{11} = 6
  3. Calculate h12h_{12}: Next, we calculate the element h12h_{12} of matrix HH. This is the element in the first row and second column of the resulting matrix. Using the formula for matrix multiplication, we have:\newlineh12=f11×e12+f12×e22h_{12} = f_{11} \times e_{12} + f_{12} \times e_{22}\newlineh12=1×(1)+2×2h_{12} = 1 \times (-1) + 2 \times 2\newlineh12=1+4h_{12} = -1 + 4\newlineh12=3h_{12} = 3
  4. Calculate h13h_{13}: Now, we calculate the element h13h_{13} of matrix HH. This is the element in the first row and third column of the resulting matrix. Using the formula for matrix multiplication, we have:\newlineh13=f11×e13+f12×e23h_{13} = f_{11} \times e_{13} + f_{12} \times e_{23}\newlineh13=1×5+2×1h_{13} = 1 \times 5 + 2 \times 1\newlineh13=5+2h_{13} = 5 + 2\newlineh13=7h_{13} = 7
  5. Calculate h21h_{21}: We move on to calculate the element h21h_{21} of matrix HH. This is the element in the second row and first column of the resulting matrix. Using the formula for matrix multiplication, we have:\newlineh21=f21e11+f22e21h_{21} = f_{21} \cdot e_{11} + f_{22} \cdot e_{21}\newlineh21=(2)0+33h_{21} = (-2) \cdot 0 + 3 \cdot 3\newlineh21=0+9h_{21} = 0 + 9\newlineh21=9h_{21} = 9
  6. Calculate h22h_{22}: Next, we calculate the element h22h_{22} of matrix HH. This is the element in the second row and second column of the resulting matrix. Using the formula for matrix multiplication, we have:\newlineh22=f21e12+f22e22h_{22} = f_{21} \cdot e_{12} + f_{22} \cdot e_{22}\newlineh22=(2)(1)+32h_{22} = (-2) \cdot (-1) + 3 \cdot 2\newlineh22=2+6h_{22} = 2 + 6\newlineh22=8h_{22} = 8
  7. Calculate h23h_{23}: Finally, we calculate the element h23h_{23} of matrix HH. This is the element in the second row and third column of the resulting matrix. Using the formula for matrix multiplication, we have:\newlineh23=f21×e13+f22×e23h_{23} = f_{21} \times e_{13} + f_{22} \times e_{23}\newlineh23=(2)×5+3×1h_{23} = (-2) \times 5 + 3 \times 1\newlineh23=10+3h_{23} = -10 + 3\newlineh23=7h_{23} = -7
  8. Complete Matrix H: Now that we have calculated all the elements of matrix H, we can write down the complete matrix H as follows:\newlineH = \left[\begin{array}{ccc}\(\newlineh_{11} & h_{12} & h_{13}, (\newline\)h_{21} & h_{22} & h_{23}\newline\end{array}\right]\)\newlineH = \left[\begin{array}{ccc}\(\newline6 & 3 & 7, (\newline\)9 & 8 & -7\newline\end{array}\right]\)

More problems from Find trigonometric ratios using multiple identities