Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[E=[[3,5],[-1,1]]" and "],[A=[[-2,2,3],[3,5,-2]]]:}
Let 
H=EA. Find 
H.

H=

E=[3amp;51amp;1] and A=[2amp;2amp;33amp;5amp;2] \begin{array}{l} E=\left[\begin{array}{rr} 3 & 5 \\ -1 & 1 \end{array}\right] \text { and } A=\left[\begin{array}{rrr} -2 & 2 & 3 \\ 3 & 5 & -2 \end{array}\right] \end{array} \newlineLet H=EA \mathrm{H}=\mathrm{EA} . Find H \mathrm{H} .\newlineH= \mathbf{H}=

Full solution

Q. E=[3511] and A=[223352] \begin{array}{l} E=\left[\begin{array}{rr} 3 & 5 \\ -1 & 1 \end{array}\right] \text { and } A=\left[\begin{array}{rrr} -2 & 2 & 3 \\ 3 & 5 & -2 \end{array}\right] \end{array} \newlineLet H=EA \mathrm{H}=\mathrm{EA} . Find H \mathrm{H} .\newlineH= \mathbf{H}=
  1. Matrix Product Calculation: To find the matrix product H=EAH = EA, we need to perform matrix multiplication. The matrix EE is a 2×22 \times 2 matrix, and matrix AA is a 2×32 \times 3 matrix. The resulting matrix HH will be a 2×32 \times 3 matrix. We will calculate the entries of HH by taking the dot product of the rows of EE with the columns of AA.
  2. Calculate H[1,1]H[1,1]: First, we calculate the entry in the first row and first column of HH (H[1,1]H[1,1]). This is the dot product of the first row of EE with the first column of AA:H[1,1]=(3×2)+(5×3)=6+15=9.H[1,1] = (3 \times -2) + (5 \times 3) = -6 + 15 = 9.
  3. Calculate H[1,2]H[1,2]: Next, we calculate the entry in the first row and second column of HH (H[1,2]H[1,2]). This is the dot product of the first row of EE with the second column of AA:H[1,2]=(3×2)+(5×5)=6+25=31H[1,2] = (3 \times 2) + (5 \times 5) = 6 + 25 = 31.
  4. Calculate H[1,3]H[1,3]: Now, we calculate the entry in the first row and third column of HH (H[1,3]H[1,3]). This is the dot product of the first row of EE with the third column of AA:H[1,3]=(3×3)+(5×2)=910=1H[1,3] = (3 \times 3) + (5 \times -2) = 9 - 10 = -1.
  5. Calculate H[2,1]H[2,1]: We move on to the second row and first column of HH (H[2,1]H[2,1]). This is the dot product of the second row of EE with the first column of AA:H[2,1]=(1×2)+(1×3)=2+3=5H[2,1] = (-1 \times -2) + (1 \times 3) = 2 + 3 = 5.
  6. Calculate H[2,2]H[2,2]: Next, we calculate the entry in the second row and second column of HH (H[2,2]H[2,2]). This is the dot product of the second row of EE with the second column of AA:H[2,2]=(1×2)+(1×5)=2+5=3.H[2,2] = (-1 \times 2) + (1 \times 5) = -2 + 5 = 3.
  7. Calculate H[2,3]H[2,3]: Finally, we calculate the entry in the second row and third column of HH (H[2,3]H[2,3]). This is the dot product of the second row of EE with the third column of AA:H[2,3]=(1×3)+(1×2)=32=5.H[2,3] = (-1 \times 3) + (1 \times -2) = -3 - 2 = -5.

More problems from Find trigonometric ratios using multiple identities