Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(dy)/(dx)=-3y, and 
y=2 when 
x=0.
Solve the equation.
Choose 1 answer:
(A) 
y=2+e^(-3x)
(B) 
y=1+e^(-3x)
(C) 
y=2e^(-3x)
() 
y=e^(-3x)

dydx=3y \frac{d y}{d x}=-3 y , and y=2 y=2 when x=0 x=0 .\newlineSolve the equation.\newlineChoose 11 answer:\newline(A) y=2+e3x y=2+e^{-3 x} \newline(B) y=1+e3x y=1+e^{-3 x} \newline(C) y=2e3x y=2 e^{-3 x} \newline(D) y=e3x y=e^{-3 x}

Full solution

Q. dydx=3y \frac{d y}{d x}=-3 y , and y=2 y=2 when x=0 x=0 .\newlineSolve the equation.\newlineChoose 11 answer:\newline(A) y=2+e3x y=2+e^{-3 x} \newline(B) y=1+e3x y=1+e^{-3 x} \newline(C) y=2e3x y=2 e^{-3 x} \newline(D) y=e3x y=e^{-3 x}
  1. Recognize the Equation Type: Recognize the type of differential equation. The given differential equation is a first-order linear homogeneous differential equation.
  2. Solve the Equation: Solve the differential equation.\newlineTo solve (dydx)=3y(\frac{dy}{dx}) = -3y, we can use separation of variables. Rearrange the equation to separate yy and xx:\newline(dyy)=3dx(\frac{dy}{y}) = -3 \, dx
  3. Integrate Both Sides: Integrate both sides.\newlineIntegrate the left side with respect to yy and the right side with respect to xx:\newline(1y)dy=3dx\int(\frac{1}{y}) dy = \int-3 dx\newlinelny=3x+C\ln|y| = -3x + C, where CC is the constant of integration.
  4. Solve for yy: Solve for yy.\newlineExponentiate both sides to solve for yy:\newlineelny=e(3x+C)e^{\ln|y|} = e^{(-3x + C)}\newliney=eCe(3x)y = e^C \cdot e^{(-3x)}\newlineSince eCe^C is a constant, we can denote it as AA, where A=eCA = e^C.\newlineSo, y=Ae(3x)y = Ae^{(-3x)}
  5. Use Initial Condition: Use the initial condition to find AA. Given that y=2y=2 when x=0x=0, we can substitute these values into y=Ae3xy = Ae^{-3x} to find AA: 2=Ae02 = Ae^{0} 2=A2 = A
  6. Write Final Solution: Write the final solution.\newlineNow that we have found AA, we can write the final solution:\newliney=2e3xy = 2e^{-3x}

More problems from Transformations of quadratic functions