Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(dy)/(dx)=(1)/(x) and 
y(e)=-2.

y(e^(3))=

dydx=1x \frac{d y}{d x}=\frac{1}{x} and y(e)=2 y(e)=-2 .\newliney(e3)= y\left(e^{3}\right)=

Full solution

Q. dydx=1x \frac{d y}{d x}=\frac{1}{x} and y(e)=2 y(e)=-2 .\newliney(e3)= y\left(e^{3}\right)=
  1. Integrate and solve equation: Integrate both sides of the equation dydx=1x\frac{dy}{dx}=\frac{1}{x} to find y(x)y(x).dy=1xdx\int dy = \int \frac{1}{x} dxy=lnx+Cy = \ln|x| + C
  2. Find constant using initial condition: Substitute x=ex=e to find the constant CC using the initial condition y(e)=2y(e)=-2.\newline2=lne+C-2 = \ln|e| + C\newline2=1+C-2 = 1 + C\newlineC=3C = -3
  3. Write general solution: Write the general solution for y(x)y(x) with the found constant CC.\newliney(x)=lnx3y(x) = \ln|x| - 3
  4. Substitute x=e3x=e^3: Substitute x=e3x=e^{3} into the general solution to find y(e3)y(e^{3}).
    y(e3)=lne33y(e^{3}) = \ln|e^{3}| - 3
    y(e3)=3lne3y(e^{3}) = 3\ln|e| - 3
  5. Simplify expression: Simplify the expression since lne=1\ln|e|=1.\newliney(e3)=3(1)3y(e^{3}) = 3(1) - 3\newliney(e3)=33y(e^{3}) = 3 - 3
  6. Calculate final value: Calculate the final value of y(e3)y(e^{3}).y(e3)=0y(e^{3}) = 0

More problems from Csc, sec, and cot of special angles