Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(bd)^((1)/(4))*((b)/(d))^(4)
Which of the following expressions is equivalent to the given expression assuming 
d is nonzero?
Choose 1 answer:
(A) 
b^((17)/(4))d^((17)/(4))
(B) 
b^((17)/(4))d^(-(15)/(4))
(c) 
b^(2)
(D) 
(b)/(d)

(bd)14(bd)4 (b d)^{\frac{1}{4}} \cdot\left(\frac{b}{d}\right)^{4} \newlineWhich of the following expressions is equivalent to the given expression assuming d d is nonzero?\newlineChoose 11 answer:\newline(A) b174d174 b^{\frac{17}{4}} d^{\frac{17}{4}} \newline(B) b174d154 b^{\frac{17}{4}} d^{-\frac{15}{4}} \newline(C) b2 b^{2} \newline(D) bd \frac{b}{d}

Full solution

Q. (bd)14(bd)4 (b d)^{\frac{1}{4}} \cdot\left(\frac{b}{d}\right)^{4} \newlineWhich of the following expressions is equivalent to the given expression assuming d d is nonzero?\newlineChoose 11 answer:\newline(A) b174d174 b^{\frac{17}{4}} d^{\frac{17}{4}} \newline(B) b174d154 b^{\frac{17}{4}} d^{-\frac{15}{4}} \newline(C) b2 b^{2} \newline(D) bd \frac{b}{d}
  1. Simplify expression using exponents: Simplify the expression by applying the properties of exponents.\newline(bd)14(bd)4(bd)^{\frac{1}{4}}\cdot\left(\frac{b}{d}\right)^{4} can be rewritten as (b14d14)(b4d4)\left(b^{\frac{1}{4}} \cdot d^{\frac{1}{4}}\right) \cdot \left(\frac{b^{4}}{d^{4}}\right).
  2. Separate terms involving b and d: Separate the terms involving b and d.\newlineThis gives us b^{11/44} \cdot b^44 / d^{11/44} \cdot d^44.
  3. Combine exponents for b and d: Combine the exponents for b and d using the property of exponents that states a^{m} \cdot a^{n} = a^{m+n}.\newlineFor b, we have b^{11/44 + 44} = b^{11/44 + 1616/44} = b^{1717/44}.\newlineFor d, we have d^{11/44 - 44} = d^{11/44 - 1616/44} = d^{15-15/44}.
  4. Write final expression: Write the final expression.\newlineThe equivalent expression is b174d154b^{\frac{17}{4}} \cdot d^{-\frac{15}{4}}.

More problems from Compare linear and exponential growth