Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(b^((3)/(4)))^((2)/(9))
Which of the following expressions is equivalent to the given expression?
Choose 1 answer:
(A) 
sqrt(b^(6))
(B) 
(2)/(9)root(4)(b^(3))
(c) 
root(13)(b^(5))
(D) 
root(6)(b)

(b34)29 \left(b^{\frac{3}{4}}\right)^{\frac{2}{9}} \newlineWhich of the following expressions is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) b6 \sqrt{b^{6}} \newline(B) 29b34 \frac{2}{9} \sqrt[4]{b^{3}} \newline(c) b513 \sqrt[13]{b^{5}} \newline(D) b6 \sqrt[6]{b}

Full solution

Q. (b34)29 \left(b^{\frac{3}{4}}\right)^{\frac{2}{9}} \newlineWhich of the following expressions is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) b6 \sqrt{b^{6}} \newline(B) 29b34 \frac{2}{9} \sqrt[4]{b^{3}} \newline(c) b513 \sqrt[13]{b^{5}} \newline(D) b6 \sqrt[6]{b}
  1. Apply power of power rule: Apply the power of a power rule.\newlineThe power of a power rule states that (am)n=a(mn)(a^m)^n = a^{(m*n)}. We will apply this rule to the given expression (b34)29(b^{\frac{3}{4}})^{\frac{2}{9}}.\newlineCalculation: (b34)29=b(3429)(b^{\frac{3}{4}})^{\frac{2}{9}} = b^{(\frac{3}{4}*\frac{2}{9})}
  2. Multiply exponents: Multiply the exponents.\newlineWe need to multiply the fractions (34)(\frac{3}{4}) and (29)(\frac{2}{9}) to find the new exponent for bb.\newlineCalculation: (34)×(29)=636=16(\frac{3}{4}) \times (\frac{2}{9}) = \frac{6}{36} = \frac{1}{6}
  3. Write expression with new exponent: Write the expression with the new exponent.\newlineNow that we have the new exponent, we can write the expression as b16b^{\frac{1}{6}}.\newlineCalculation: (b34)29=b16(b^{\frac{3}{4}})^{\frac{2}{9}} = b^{\frac{1}{6}}
  4. Match expression to answer choices: Match the expression to the answer choices.\newlineWe need to find which answer choice is equivalent to b16b^{\frac{1}{6}}.\newline(A) b6\sqrt{b^6} is not equivalent because b6=b3\sqrt{b^6} = b^3.\newline(B) (29)b34\left(\frac{2}{9}\right)\sqrt[4]{b^3} is not equivalent because it suggests a multiplication by (29)\left(\frac{2}{9}\right), which is not present in our expression.\newline(C) b513\sqrt[13]{b^5} is not equivalent because it has a different root and exponent.\newline(D) b6\sqrt[6]{b} is equivalent because b6=b16\sqrt[6]{b} = b^{\frac{1}{6}}.

More problems from Compare linear and exponential growth