Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(a)

{:[f(x)=(1)/(6x)","x!=0.],[g(x)=(1)/(6x)","x!=0.],[f(g(x))=◻],[g(f(x))=◻]:}

f and 
g are inverses of each other

f and 
g are not inverses of each other
(b) 
f(x)=x+2

{:[g(x)=x+2],[f(g(x))=◻],[g(f(x))=◻]:}

f_("and ")g are inverses of each other

f and 
g are not inverses of each other

(a)\newlinef(x)=16x,x0.g(x)=16x,x0.f(g(x))=g(f(x))= \begin{array}{l} f(x)=\frac{1}{6 x}, x \neq 0 . \\ g(x)=\frac{1}{6 x}, x \neq 0 . \\ f(g(x))=\square \\ g(f(x))=\square \end{array} \newlinef f and g g are inverses of each other\newlinef f and g g are not inverses of each other\newline(b) f(x)=x+2 f(x)=x+2 \newlineg(x)=x+2f(g(x))=g(f(x))= \begin{array}{l} g(x)=x+2 \\ f(g(x))=\square \\ g(f(x))=\square \end{array} \newlinefand g f_{\text {and }} \boldsymbol{g} are inverses of each other\newlinef f and g g are not inverses of each other

Full solution

Q. (a)\newlinef(x)=16x,x0.g(x)=16x,x0.f(g(x))=g(f(x))= \begin{array}{l} f(x)=\frac{1}{6 x}, x \neq 0 . \\ g(x)=\frac{1}{6 x}, x \neq 0 . \\ f(g(x))=\square \\ g(f(x))=\square \end{array} \newlinef f and g g are inverses of each other\newlinef f and g g are not inverses of each other\newline(b) f(x)=x+2 f(x)=x+2 \newlineg(x)=x+2f(g(x))=g(f(x))= \begin{array}{l} g(x)=x+2 \\ f(g(x))=\square \\ g(f(x))=\square \end{array} \newlinefand g f_{\text {and }} \boldsymbol{g} are inverses of each other\newlinef f and g g are not inverses of each other
  1. Analyze Functions: Analyze the first set of functions:\newlinef(x)=16xf(x) = \frac{1}{6x}, x0x \neq 0.\newlineg(x)=16xg(x) = \frac{1}{6x}, x0x \neq 0.\newlineCalculate f(g(x))f(g(x)) and g(f(x))g(f(x)) to check if they are inverses.\newlinef(g(x))=f(16x)=16(16x)=xf(g(x)) = f\left(\frac{1}{6x}\right) = \frac{1}{6\left(\frac{1}{6x}\right)} = x.\newlineg(f(x))=g(16x)=16(16x)=xg(f(x)) = g\left(\frac{1}{6x}\right) = \frac{1}{6\left(\frac{1}{6x}\right)} = x.
  2. Check Inverses: Since f(g(x))=xf(g(x)) = x and g(f(x))=xg(f(x)) = x for all x0x \neq 0, ff and gg are inverses of each other for the first set.
  3. Analyze Functions: Analyze the second set of functions:\newlinef(x)=x+2f(x) = x + 2.\newlineg(x)=x+2g(x) = x + 2.\newlineCalculate f(g(x))f(g(x)) and g(f(x))g(f(x)) to check if they are inverses.\newlinef(g(x))=f(x+2)=(x+2)+2=x+4f(g(x)) = f(x + 2) = (x + 2) + 2 = x + 4.\newlineg(f(x))=g(x+2)=(x+2)+2=x+4g(f(x)) = g(x + 2) = (x + 2) + 2 = x + 4.

More problems from Compare linear and exponential growth