Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(((a)/(b)))/(c)+(d)/(((e)/(f)))
Which of the following is equivalent to the expression above?
Choose 1 answer:
(A) 
(a)/(bc)+(df)/(e)
(B) 
(a)/(bc)+(de)/(f)
(C) 
(bc)/(a)+(df)/(e)
(D) 
(bc)/(a)+(de)/(f)

(ab)c+d(ef) \frac{\left(\frac{a}{b}\right)}{c}+\frac{d}{\left(\frac{e}{f}\right)} \newlineWhich of the following is equivalent to the expression above?\newlineChoose 11 answer:\newline(A) abc+dfe \frac{a}{b c}+\frac{d f}{e} \newline(B) abc+def \frac{a}{b c}+\frac{d e}{f} \newline(C) bca+dfe \frac{b c}{a}+\frac{d f}{e} \newline(D) bca+def \frac{b c}{a}+\frac{d e}{f}

Full solution

Q. (ab)c+d(ef) \frac{\left(\frac{a}{b}\right)}{c}+\frac{d}{\left(\frac{e}{f}\right)} \newlineWhich of the following is equivalent to the expression above?\newlineChoose 11 answer:\newline(A) abc+dfe \frac{a}{b c}+\frac{d f}{e} \newline(B) abc+def \frac{a}{b c}+\frac{d e}{f} \newline(C) bca+dfe \frac{b c}{a}+\frac{d f}{e} \newline(D) bca+def \frac{b c}{a}+\frac{d e}{f}
  1. Simplify first term: We have the expression: (ab)/c+d(ef)\left(\frac{a}{b}\right)/c + \frac{d}{\left(\frac{e}{f}\right)}. To simplify the first term, we can multiply the numerator and the denominator by cc to get rid of the complex fraction: abc\frac{a}{bc}.
  2. Simplify second term: For the second term, we can multiply the numerator and the denominator by ff to get rid of the complex fraction: (dfe)(\frac{df}{e}).
  3. Combine simplified terms: Now, we combine the simplified terms to get the equivalent expression: (abc)+(dfe)(\frac{a}{bc}) + (\frac{df}{e}).
  4. Compare with given choices: We compare the simplified expression with the given choices:\newline(A) (abc+dfe)(\frac{a}{bc}+\frac{df}{e}) matches our simplified expression.\newline(B) (abc+def)(\frac{a}{bc}+\frac{de}{f}) does not match because the second term is incorrect.\newline(C) (bca+dfe)(\frac{bc}{a}+\frac{df}{e}) does not match because the first term is inverted.\newline(D) (bca+def)(\frac{bc}{a}+\frac{de}{f}) does not match because both terms are incorrect.

More problems from Compare linear and exponential growth