Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(((a)/(b)))/(c)*(a)/(((b)/(c)))
Which of the following is equivalent to the given expression?
Choose 1 answer:
(A) 
(a^(2))/(b^(2))
(B) 
(a^(2))/(c^(2))
(C) 
(a^(2))/(b^(2)c^(2))
(D) 
(a^(2)c^(2))/(b^(2))

(ab)ca(bc) \frac{\left(\frac{a}{b}\right)}{c} \cdot \frac{a}{\left(\frac{b}{c}\right)} \newlineWhich of the following is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) a2b2 \frac{a^{2}}{b^{2}} \newline(B) a2c2 \frac{a^{2}}{c^{2}} \newline(c) a2b2c2 \frac{a^{2}}{b^{2} c^{2}} \newline(D) a2c2b2 \frac{a^{2} c^{2}}{b^{2}}

Full solution

Q. (ab)ca(bc) \frac{\left(\frac{a}{b}\right)}{c} \cdot \frac{a}{\left(\frac{b}{c}\right)} \newlineWhich of the following is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) a2b2 \frac{a^{2}}{b^{2}} \newline(B) a2c2 \frac{a^{2}}{c^{2}} \newline(c) a2b2c2 \frac{a^{2}}{b^{2} c^{2}} \newline(D) a2c2b2 \frac{a^{2} c^{2}}{b^{2}}
  1. Multiply by reciprocal: Simplify the given expression by multiplying the numerator and denominator by the reciprocal of the denominator.\newlineThe given expression is: (ab)/(ca)a(bc)\left(\frac{a}{b}\right)\bigg/\left(\frac{c}{a}\right)\cdot\frac{a}{\left(\frac{b}{c}\right)}\newlineWe can rewrite this as: (ab)(1c)a(cb)\left(\frac{a}{b}\right) \cdot \left(\frac{1}{c}\right) \cdot a \cdot \left(\frac{c}{b}\right)
  2. Cancel out common factors: Simplify the expression by canceling out common factors.\newlineThe cc in the numerator and the cc in the denominator cancel each other out, as do the bb in the numerator and the bb in the denominator.\newlineThis leaves us with: aabb\frac{a \cdot a}{b \cdot b}
  3. Use exponents: Rewrite the simplified expression using exponents.\newlineThe expression (aa)/(bb)(a \cdot a) / (b \cdot b) can be written as: (a2)/(b2)(a^2) / (b^2)
  4. Match with answer choices: Match the simplified expression with the given answer choices.\newlineThe expression (a2)/(b2)(a^2) / (b^2) corresponds to answer choice (A).

More problems from Compare linear and exponential growth