Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(a^(8)b^(-2))/(a^(2)b^(10))
Which of the following is equivalent to the given expression for 
a,b!=0 ?
Choose 1 answer:
(A) 
a^(4)b^(-5)
(B) 
a^(6)b^(12)
(C) 
(a^(4))/(b^(-5))
(D) 
(a^(6))/(b^(12))

a8b2a2b10 \frac{a^{8} b^{-2}}{a^{2} b^{10}} \newlineWhich of the following is equivalent to the given expression for a,b0 a, b \neq 0 ?\newlineChoose 11 answer:\newline(A) a4b5 a^{4} b^{-5} \newline(B) a6b12 a^{6} b^{12} \newline(C) a4b5 \frac{a^{4}}{b^{-5}} \newline(D) a6b12 \frac{a^{6}}{b^{12}}

Full solution

Q. a8b2a2b10 \frac{a^{8} b^{-2}}{a^{2} b^{10}} \newlineWhich of the following is equivalent to the given expression for a,b0 a, b \neq 0 ?\newlineChoose 11 answer:\newline(A) a4b5 a^{4} b^{-5} \newline(B) a6b12 a^{6} b^{12} \newline(C) a4b5 \frac{a^{4}}{b^{-5}} \newline(D) a6b12 \frac{a^{6}}{b^{12}}
  1. Given expression: We are given the expression (a8b2)/(a2b10)(a^{8}b^{-2})/(a^{2}b^{10}). To simplify this expression, we use the properties of exponents, specifically the quotient rule which states that when dividing like bases, we subtract the exponents: am/an=amna^{m}/a^{n} = a^{m-n} and bm/bn=bmnb^{m}/b^{n} = b^{m-n}.
  2. Applying quotient rule: Applying the quotient rule to the given expression, we get:\newlinea82b210=a6b12a^{8-2}b^{-2-10} = a^{6}b^{-12}.
  3. Simplified expression: The simplified expression a6b12a^{6}b^{-12} can be rewritten as (a6)/(b12)(a^{6})/(b^{12}) because b12=1/b12b^{-12} = 1/b^{12}.
  4. Comparing with answer choices: Now we compare our simplified expression with the answer choices. The expression (a6)/(b12)(a^{6})/(b^{12}) matches with choice (D).

More problems from Compare linear and exponential growth