Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

((a^(7))/(a^(-3)))^(0)*(a^(3)(a^(-2))^(4))/(a^(7))
The given expression simplifies to 
a^(x), for some integer 
x. What is the value of 
x ?
Choose 1 answer:
(A) -12
(B) 0
(C) 2
(D) 12

(a7a3)0a3(a2)4a7 \left(\frac{a^{7}}{a^{-3}}\right)^{0} \cdot \frac{a^{3}\left(a^{-2}\right)^{4}}{a^{7}} \newlineThe given expression simplifies to ax a^{x} , for some integer x x . What is the value of x x ?\newlineChoose 11 answer:\newline(A) 12-12\newline(B) 00\newline(C) 22\newline(D) 1212

Full solution

Q. (a7a3)0a3(a2)4a7 \left(\frac{a^{7}}{a^{-3}}\right)^{0} \cdot \frac{a^{3}\left(a^{-2}\right)^{4}}{a^{7}} \newlineThe given expression simplifies to ax a^{x} , for some integer x x . What is the value of x x ?\newlineChoose 11 answer:\newline(A) 12-12\newline(B) 00\newline(C) 22\newline(D) 1212
  1. Step 11: Simplify the expression: First, let's simplify the expression step by step. We start with the first part of the expression: (a7a3)0\left(\frac{a^{7}}{a^{-3}}\right)^{0}. Any number (except 00) raised to the power of 00 is 11. So this part of the expression simplifies to 11.
  2. Step 22: Simplify the exponent in parentheses: Next, we look at the second part of the expression: (a3(a2)4)/(a7)(a^{3}(a^{-2})^{4})/(a^{7}). We can simplify the exponent in the parentheses first: (a2)4=a24=a8(a^{-2})^4 = a^{-2*4} = a^{-8}.
  3. Step 33: Multiply numbers with the same base: Now we have a3×a8a^{3} \times a^{-8} in the numerator. When we multiply numbers with the same base, we add the exponents: a3×a8=a3+(8)=a5a^{3} \times a^{-8} = a^{3 + (-8)} = a^{-5}.
  4. Step 44: Ignore the 11: We now have the expression 1×(a5)/(a7)1 \times (a^{-5})/(a^{7}). Since 11 multiplied by anything is itself, we can ignore the 11. So we are left with (a5)/(a7)(a^{-5})/(a^{7}).
  5. Step 55: Divide numbers with the same base: When we divide numbers with the same base, we subtract the exponents: a5/a7=a57=a12a^{-5} / a^{7} = a^{-5 - 7} = a^{-12}.
  6. Step 66: Simplify the expression: The expression simplifies to a12a^{-12}. Therefore, the value of xx is 12-12, which corresponds to answer choice (A).

More problems from Compare linear and exponential growth