Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

-81x^(2)=-11
What are the solutions to the given equation?
Choose 1 answer:
(A) 
x=(sqrt11)/(81)
B 
x=-(sqrt11)/(81) and 
x=(sqrt11)/(81)
(C) 
x=-(sqrt11)/(9) and 
x=(sqrt11)/(9)
(D) 
x=(sqrt11)/(9)

81x2=11 -81 x^{2}=-11 \newlineWhat are the solutions to the given equation?\newlineChoose 11 answer:\newline(A) x=1181 x=\frac{\sqrt{11}}{81} \newline(B) x=1181 x=-\frac{\sqrt{11}}{81} and x=1181 x=\frac{\sqrt{11}}{81} \newline(C) x=119 x=-\frac{\sqrt{11}}{9} and x=119 x=\frac{\sqrt{11}}{9} \newline(D) x=119 x=\frac{\sqrt{11}}{9}

Full solution

Q. 81x2=11 -81 x^{2}=-11 \newlineWhat are the solutions to the given equation?\newlineChoose 11 answer:\newline(A) x=1181 x=\frac{\sqrt{11}}{81} \newline(B) x=1181 x=-\frac{\sqrt{11}}{81} and x=1181 x=\frac{\sqrt{11}}{81} \newline(C) x=119 x=-\frac{\sqrt{11}}{9} and x=119 x=\frac{\sqrt{11}}{9} \newline(D) x=119 x=\frac{\sqrt{11}}{9}
  1. Question Prompt: question_prompt: "What are the solutions to the given equation 81x2=11-81x^{2}=-11?"
  2. Step 11: Step 11: Divide both sides of the equation by 81-81 to isolate x2x^2. So, x2=11/81x^2 = -11/-81.
  3. Step 22: Step 22: Simplify the right side of the equation. x2=1181x^2 = \frac{11}{81}.
  4. Step 33: Step 33: Take the square root of both sides to solve for xx. Remember, there are two solutions: x=1181x = \sqrt{\frac{11}{81}} and x=1181x = -\sqrt{\frac{11}{81}}.
  5. Step 44: Step 44: Simplify the square root. 1181\sqrt{\frac{11}{81}} is the same as 11/81\sqrt{11}/\sqrt{81}.
  6. Step 55: Step 55: Since 81\sqrt{81} is 99, we get x=119x = \frac{\sqrt{11}}{9} and x=119x = -\frac{\sqrt{11}}{9}.

More problems from Solve a quadratic equation using the zero product property