Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(792)/(7)=(4)/(3)×(22)/(7)×r^(3).

7927=43×227×r3 \frac{792}{7}=\frac{4}{3} \times \frac{22}{7} \times r^{3} .

Full solution

Q. 7927=43×227×r3 \frac{792}{7}=\frac{4}{3} \times \frac{22}{7} \times r^{3} .
  1. Write Equation: Write down the given equation.\newlineThe given equation is 7927=43×227×r3\frac{792}{7}=\frac{4}{3}\times\frac{22}{7}\times r^{3}.
  2. Simplify Right Side: Simplify the right side of the equation by multiplying the fractions.\newline(43)×(227)=(4×223×7)=(8821)(\frac{4}{3})\times(\frac{22}{7}) = (\frac{4\times22}{3\times7}) = (\frac{88}{21}).\newlineSo, the equation becomes (7927)=(8821)×r3(\frac{792}{7})=(\frac{88}{21})\times r^{3}.
  3. Multiply by 77: Multiply both sides of the equation by 77 to eliminate the denominator on the left side.\newline7927×7=8821×r3×7\frac{792}{7}\times7 = \frac{88}{21}\times r^{3}\times7.\newlineThis simplifies to 792=88×721×r3792 = \frac{88\times7}{21}\times r^{3}.
  4. Calculate Value: Calculate the value of 88×788\times7.\newline88×7=61688\times7 = 616.\newlineSo, the equation now is 792=61621×r3792 = \frac{616}{21}\times r^{3}.
  5. Divide by Fraction: Divide both sides of the equation by (616)/(21)(616)/(21) to solve for r3r^{3}.792÷(616)/(21)=r3792 \div (616)/(21) = r^{3}.
  6. Calculate Value: Calculate the value of 792÷(61621)792 \div \left(\frac{616}{21}\right). To divide by a fraction, multiply by its reciprocal. So, we multiply 792792 by (21616)\left(\frac{21}{616}\right). 792×(21616)=r3792 \times \left(\frac{21}{616}\right) = r^{3}.
  7. Simplify Fraction: Calculate the value of 792×21616792 \times \frac{21}{616}.\newline792×21616=16632616792 \times \frac{21}{616} = \frac{16632}{616}.
  8. Take Cube Root: Simplify the fraction 16632616\frac{16632}{616}. 16632616=27\frac{16632}{616} = 27. So, the equation now is 27=r327 = r^{3}.
  9. Calculate Cube Root: Take the cube root of both sides to solve for rr.r=273.r = \sqrt[3]{27}.
  10. Calculate Cube Root: Take the cube root of both sides to solve for rr.r=273r = \sqrt[3]{27}.Calculate the cube root of 2727.273=3\sqrt[3]{27} = 3.So, r=3r = 3.

More problems from Operations with rational exponents