Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(-5z)-(2-z)*(3-z)
Which of the following expressions is equivalent to the given expression?
Choose 1 answer:
(A) 
-z^(2)-10 z-6
(B) 
-z^(2)-4z+6
(c) 
-z^(2)-6
(D) 
z^(2)-10 z-6

(5z)(2z)(3z) (-5 z)-(2-z) \cdot(3-z) \newlineWhich of the following expressions is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) z210z6 -z^{2}-10 z-6 \newline(B) z24z+6 -z^{2}-4 z+6 \newline(C) z26 -z^{2}-6 \newline(D) z210z6 z^{2}-10 z-6

Full solution

Q. (5z)(2z)(3z) (-5 z)-(2-z) \cdot(3-z) \newlineWhich of the following expressions is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) z210z6 -z^{2}-10 z-6 \newline(B) z24z+6 -z^{2}-4 z+6 \newline(C) z26 -z^{2}-6 \newline(D) z210z6 z^{2}-10 z-6
  1. Distribute and expand: Distribute the negative sign through the first term and expand the product of the two binomials.\newlineWe have the expression (5z)(2z)(3z)(-5z) - (2 - z)(3 - z). First, we distribute the negative sign through the first term, which does not change anything since it's just 5z-5z. Then we expand the product (2z)(3z)(2 - z)(3 - z) using the distributive property (FOIL method).
  2. Apply FOIL method: Apply the FOIL method to the product (2z)(3z)(2 - z)(3 - z).
    (2z)(3z)=23+2(z)+(z)3+(z)(z)(2 - z)(3 - z) = 2 \cdot 3 + 2 \cdot (-z) + (-z) \cdot 3 + (-z) \cdot (-z)
    =62z3z+z2= 6 - 2z - 3z + z^2
    Now, combine like terms.
    =65z+z2= 6 - 5z + z^2
  3. Combine like terms: Subtract the expanded binomial from 5z-5z.\newlineNow we have the original expression as:\newline5z(65z+z2)-5z - (6 - 5z + z^2)\newlineDistribute the negative sign through the parentheses to subtract the binomial.\newline5z6+5zz2-5z - 6 + 5z - z^2
  4. Subtract expanded binomial: Combine like terms.\newlineNow combine the terms 5z-5z and 5z5z, which cancel each other out, and bring down the remaining terms.\newline0z6z20z - 6 - z^2\newlineThis simplifies to:\newlinez26-z^2 - 6
  5. Simplify expression: Match the simplified expression with the given choices.\newlineThe simplified expression is -z^\(2 - 66"). Now we compare this with the given choices:\newline(A) -z^{\(2\)}\(-10z6-6")\newline(B) -z^{\(2\)}\(-4z+66")\newline(C) -z^{\(2\)}\(-6")\newline(D) z^{\(2\)}\(-10z6-6")\newlineThe correct choice that matches our simplified expression is (C) -z^{\(2\)}\(-6").

More problems from Compare linear and exponential growth