Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(5m^(2)+7m)/(2m-9)-(2m)/(2m-9)
Which expression is equivalent to the difference?
Choose 1 answer:
(A) 
(3m^(2)+7m)/(2m-9)
(B) 
(5m^(2)+5m)/(2m-9)
(C) 
(5m+9m)/(2m-9)
(D) 
(5m^(2)+7m-1)/(2m-9)

5m2+7m2m92m2m9 \frac{5 m^{2}+7 m}{2 m-9}-\frac{2 m}{2 m-9} \newlineWhich expression is equivalent to the difference?\newlineChoose 11 answer:\newline(A) 3m2+7m2m9 \frac{3 m^{2}+7 m}{2 m-9} \newline(B) 5m2+5m2m9 \frac{5 m^{2}+5 m}{2 m-9} \newline(C) 5m+9m2m9 \frac{5 m+9 m}{2 m-9} \newline(D) 5m2+7m12m9 \frac{5 m^{2}+7 m-1}{2 m-9}

Full solution

Q. 5m2+7m2m92m2m9 \frac{5 m^{2}+7 m}{2 m-9}-\frac{2 m}{2 m-9} \newlineWhich expression is equivalent to the difference?\newlineChoose 11 answer:\newline(A) 3m2+7m2m9 \frac{3 m^{2}+7 m}{2 m-9} \newline(B) 5m2+5m2m9 \frac{5 m^{2}+5 m}{2 m-9} \newline(C) 5m+9m2m9 \frac{5 m+9 m}{2 m-9} \newline(D) 5m2+7m12m9 \frac{5 m^{2}+7 m-1}{2 m-9}
  1. Write and identify common denominator: Write down the given expressions and identify the common denominator.\newlineThe given expressions are (5m2+7m)/(2m9)(5m^2 + 7m) / (2m - 9) and (2m)/(2m9)(2m) / (2m - 9). The common denominator is (2m9)(2m - 9).
  2. Combine expressions over common denominator: Combine the expressions over the common denominator.\newlineSince the denominator is the same for both expressions, we can combine the numerators over the common denominator:\newline(5m2+7m)(2m)\left(5m^2 + 7m\right) - \left(2m\right) / 2m92m - 9.
  3. Subtract numerators: Subtract the numerators.\newlineSubtract 2m2m from (5m2+7m)(5m^2 + 7m) to get:\newline5m2+7m2m2m9\frac{5m^2 + 7m - 2m}{2m - 9}.
  4. Simplify numerator: Simplify the numerator.\newlineCombine like terms in the numerator:\newline(5m2+5m)/(2m9)(5m^2 + 5m) / (2m - 9).
  5. Match simplified expression with choices: Match the simplified expression with the given choices.\newlineThe simplified expression (5m2+5m)/(2m9)(5m^2 + 5m) / (2m - 9) matches choice (B).

More problems from Compare linear and exponential growth