Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(((ℓ^(5)n^(2))/(ℓ^(7)n)))/(((ℓ^(3)n^(9))/(ℓn^(3))))
Which expression is equivalent to the given quotient for all 
ℓ < -2 and 
n > 4 ?
Choose 1 answer:
(A) 0
(B) 1
(c) 
ℓ^(4)n^(5)
(D) 
(1)/(ℓ^(4)n^(5))

(5n27n)(3n9n3) \frac{\left(\frac{\ell^{5} n^{2}}{\ell^{7} n}\right)}{\left(\frac{\ell^{3} n^{9}}{\ell n^{3}}\right)} \newlineWhich expression is equivalent to the given quotient for all \ell<-2 and n>4 ?\newlineChoose 11 answer:\newline(A) 00\newline(B) 11\newline(C) 4n5 \ell^{4} n^{5} \newline(D) 14n5 \frac{1}{\ell^{4} n^{5}}

Full solution

Q. (5n27n)(3n9n3) \frac{\left(\frac{\ell^{5} n^{2}}{\ell^{7} n}\right)}{\left(\frac{\ell^{3} n^{9}}{\ell n^{3}}\right)} \newlineWhich expression is equivalent to the given quotient for all <2 \ell<-2 and n>4 n>4 ?\newlineChoose 11 answer:\newline(A) 00\newline(B) 11\newline(C) 4n5 \ell^{4} n^{5} \newline(D) 14n5 \frac{1}{\ell^{4} n^{5}}
  1. Simplify expression by dividing: Simplify the given expression by dividing the numerators and denominators separately.\newlineThe given expression is:\newline(5n27n)/(3n9n3)\left(\frac{\ell^{5}n^{2}}{\ell^{7}n}\right)\bigg/\left(\frac{\ell^{3}n^{9}}{\ell n^{3}}\right)\newlineWe can simplify the expression by dividing the exponents with the same base using the property am/an=amna^{m}/a^{n} = a^{m-n}.
  2. Apply exponent rules to numerator: Apply the exponent rules to the numerator.\newlineSimplify 5n2\ell^{5}n^{2} divided by 7n\ell^{7}n:\newline57n21=2n1\ell^{5-7}n^{2-1} = \ell^{-2}n^{1}
  3. Apply exponent rules to denominator: Apply the exponent rules to the denominator.\newlineSimplify 3n9\ell^{3}n^{9} divided by n3\ell n^{3}:\newline(31)n(93)=2n6\ell^{(3-1)}n^{(9-3)} = \ell^{2}n^{6}
  4. Divide numerator by denominator: Now divide the simplified numerator by the simplified denominator.\newlineDivide 2n1\ell^{-2}n^{1} by 2n6\ell^{2}n^{6}:\newline2n12n6\frac{\ell^{-2}n^{1}}{\ell^{2}n^{6}}
  5. Apply exponent rules to division: Apply the exponent rules to the division of the simplified numerator and denominator.\newline(22)n(16)=4n5\ell^{(-2-2)}n^{(1-6)} = \ell^{-4}n^{-5}
  6. Rewrite expression with positive exponents: Rewrite the expression with positive exponents.\newline4n5\ell^{-4}n^{-5} can be rewritten as 14n5\frac{1}{\ell^{4}n^{5}}.

More problems from Compare linear, exponential, and quadratic growth