Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(3g^(2)+12 g)/(g+7)*(4)/(8g^(2))
Which expression is equivalent to the product for all 
g > 0 ?
Choose 1 answer:
(A) 
(3g+48)/(g^(2)+56 g)
(B) 
(12 g+12)/(8g^(2)+7g)
(c) 
(3g+12)/(2g^(2)+14 g)
(D) 
(3+12 g)/(2g+14)

3g2+12gg+748g2 \frac{3 g^{2}+12 g}{g+7} \cdot \frac{4}{8 g^{2}} \newlineWhich expression is equivalent to the product for all g>0 ?\newlineChoose 11 answer:\newline(A) 3g+48g2+56g \frac{3 g+48}{g^{2}+56 g} \newline(B) 12g+128g2+7g \frac{12 g+12}{8 g^{2}+7 g} \newline(C) 3g+122g2+14g \frac{3 g+12}{2 g^{2}+14 g} \newline(D) 3+12g2g+14 \frac{3+12 g}{2 g+14}

Full solution

Q. 3g2+12gg+748g2 \frac{3 g^{2}+12 g}{g+7} \cdot \frac{4}{8 g^{2}} \newlineWhich expression is equivalent to the product for all g>0 g>0 ?\newlineChoose 11 answer:\newline(A) 3g+48g2+56g \frac{3 g+48}{g^{2}+56 g} \newline(B) 12g+128g2+7g \frac{12 g+12}{8 g^{2}+7 g} \newline(C) 3g+122g2+14g \frac{3 g+12}{2 g^{2}+14 g} \newline(D) 3+12g2g+14 \frac{3+12 g}{2 g+14}
  1. Factor Common Factor: First, let's factor out the common factor in the numerator of the first fraction.\newline3g2+12g3g^2 + 12g can be factored as 3g(g+4)3g(g + 4).\newlineSo, the expression becomes (3g(g+4))/(g+7)×(4)/(8g2)(3g(g + 4))/(g + 7) \times (4)/(8g^2).
  2. Simplify Second Fraction: Next, we simplify the second fraction by dividing both the numerator and the denominator by 44. \newline(4)/(8g2)(4)/(8g^2) simplifies to (1)/(2g2)(1)/(2g^2). \newlineNow, the expression is (3g(g+4))/(g+7)×(1)/(2g2)(3g(g + 4))/(g + 7) \times (1)/(2g^2).
  3. Multiply Fractions: We can now multiply the two fractions together.\newlineWhen multiplying fractions, we multiply the numerators together and the denominators together.\newline(3g(g+4))/(g+7)×(1)/(2g2)(3g(g + 4))/(g + 7) \times (1)/(2g^2) becomes (3g(g+4))/(2g2(g+7))(3g(g + 4))/(2g^2(g + 7)).
  4. Cancel Simplify: We can simplify the expression by canceling out a gg from the numerator and the g2g^2 in the denominator.\newlineThis leaves us with (3(g+4))/(2g(g+7))(3(g + 4))/(2g(g + 7)).
  5. Distribute Numerator Denominator: Now, we distribute the 33 in the numerator and the 2g2g in the denominator.\newlineThis gives us (3g+12)/(2g2+14g)(3g + 12)/(2g^2 + 14g).
  6. Check Answer Choices: We check the answer choices to see which one matches our simplified expression.\newlineThe correct answer is (C) (3g+12)/(2g2+14g)(3g + 12)/(2g^2 + 14g).

More problems from Compare linear and exponential growth