Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(3)/(14 y)+(y)/( 14)
Which expression is equivalent to the sum for 
y!=0 ?
Choose 1 answer:
(A) 
(3+y)/(14 y+14)
(B) 
(4)/(14)
(C) 
(3+y)/(14)
(D) 
(3+y^(2))/(14 y)

314y+y14 \frac{3}{14 y}+\frac{y}{14} \newlineWhich expression is equivalent to the sum for y0 y \neq 0 ?\newlineChoose 11 answer:\newline(A) 3+y14y+14 \frac{3+y}{14 y+14} \newline(B) 414 \frac{4}{14} \newline(C) 3+y14 \frac{3+y}{14} \newline(D) 3+y214y \frac{3+y^{2}}{14 y}

Full solution

Q. 314y+y14 \frac{3}{14 y}+\frac{y}{14} \newlineWhich expression is equivalent to the sum for y0 y \neq 0 ?\newlineChoose 11 answer:\newline(A) 3+y14y+14 \frac{3+y}{14 y+14} \newline(B) 414 \frac{4}{14} \newline(C) 3+y14 \frac{3+y}{14} \newline(D) 3+y214y \frac{3+y^{2}}{14 y}
  1. Write and Identify Common Denominator: Write down the given expressions and identify the common denominator.\newlineWe have two fractions: (314y)(\frac{3}{14y}) and (y14)(\frac{y}{14}). The common denominator for these two fractions is 14y14y because 14y14y is the least common multiple of 1414 and 14y14y.
  2. Rewrite Fractions with Common Denominator: Rewrite both fractions with the common denominator of 14y14y.\newlineTo add the fractions, they must have the same denominator. We rewrite the second fraction y14\frac{y}{14} as 14y14×14y=y14×yy=y214y\frac{14y}{14 \times 14y} = \frac{y}{14} \times \frac{y}{y} = \frac{y^2}{14y}.

More problems from Compare linear and exponential growth