Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Prove the trigonometric identity.
cosA - cosB = -2sin((A+B)/(2))sin((A-B)/(2))

Prove the trigonometric identity.\newlinecosAcosB=2sin(A+B2)sin(AB2) \cos A - \cos B = -2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)

Full solution

Q. Prove the trigonometric identity.\newlinecosAcosB=2sin(A+B2)sin(AB2) \cos A - \cos B = -2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)
  1. Apply Sine Angle Subtraction Formula: Use the sine angle subtraction formula: sin(x)sin(y)=12[cos(xy)cos(x+y)]\sin(x)\sin(y) = \frac{1}{2}[\cos(x-y) - \cos(x+y)]. So, 2sin(A+B2)sin(AB2)=2×12[cos(A+B2AB2)cos(A+B2+AB2)]-2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right) = -2 \times \frac{1}{2}[\cos\left(\frac{A+B}{2} - \frac{A-B}{2}\right) - \cos\left(\frac{A+B}{2} + \frac{A-B}{2}\right)].
  2. Simplify Cosines: Simplify the cosines inside the brackets: cos(A+B2AB2)=cos(B2+B2)=cos(B)\cos\left(\frac{A+B}{2} - \frac{A-B}{2}\right) = \cos\left(\frac{B}{2} + \frac{B}{2}\right) = \cos(B), and cos(A+B2+AB2)=cos(A2+A2)=cos(A)\cos\left(\frac{A+B}{2} + \frac{A-B}{2}\right) = \cos\left(\frac{A}{2} + \frac{A}{2}\right) = \cos(A).\newlineSo, 2×(12)[cos(B)cos(A)]-2 \times \left(\frac{1}{2}\right)[\cos(B) - \cos(A)].
  3. Eliminate Negative Sign: Multiply through by 1-1 to get rid of the negative sign: 1×(12)[cos(B)cos(A)]=(12)cos(B)+(12)cos(A)-1 \times (\frac{1}{2})[\cos(B) - \cos(A)] = -(\frac{1}{2})\cos(B) + (\frac{1}{2})\cos(A).
  4. Final Multiplication: Now multiply by 2-2: 2×((12)cos(B)+(12)cos(A))=cos(B)cos(A)-2 \times (-(\frac{1}{2})\cos(B) + (\frac{1}{2})\cos(A)) = \cos(B) - \cos(A).

More problems from Operations with rational exponents