Q. Prove the trigonometric identity.cosA−cosB=−2sin(2A+B)sin(2A−B)
Apply Sine Angle Subtraction Formula: Use the sine angle subtraction formula: sin(x)sin(y)=21[cos(x−y)−cos(x+y)]. So, −2sin(2A+B)sin(2A−B)=−2×21[cos(2A+B−2A−B)−cos(2A+B+2A−B)].
Simplify Cosines: Simplify the cosines inside the brackets: cos(2A+B−2A−B)=cos(2B+2B)=cos(B), and cos(2A+B+2A−B)=cos(2A+2A)=cos(A).So, −2×(21)[cos(B)−cos(A)].
Eliminate Negative Sign: Multiply through by −1 to get rid of the negative sign: −1×(21)[cos(B)−cos(A)]=−(21)cos(B)+(21)cos(A).
Final Multiplication: Now multiply by −2: −2×(−(21)cos(B)+(21)cos(A))=cos(B)−cos(A).
More problems from Operations with rational exponents