Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(2q^(5)+7q)+(5q^(5)+3q^(3))
Which of the following expressions is equivalent to the given expression?
Choose 1 answer:
(A) 
q(7q^(4)+10)
(B) 
q(7q^(4)+10q^(2))
(C) 
q(2q^(4)+12q^(3)+3q^(2))
(D) 
q(7q^(4)+3q^(2)+7)

(2q5+7q)+(5q5+3q3) \left(2 q^{5}+7 q\right)+\left(5 q^{5}+3 q^{3}\right) \newlineWhich of the following expressions is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) q(7q4+10) q\left(7 q^{4}+10\right) \newline(B) q(7q4+10q2) q\left(7 q^{4}+10 q^{2}\right) \newline(C) q(2q4+12q3+3q2) q\left(2 q^{4}+12 q^{3}+3 q^{2}\right) \newline(D) q(7q4+3q2+7) q\left(7 q^{4}+3 q^{2}+7\right)

Full solution

Q. (2q5+7q)+(5q5+3q3) \left(2 q^{5}+7 q\right)+\left(5 q^{5}+3 q^{3}\right) \newlineWhich of the following expressions is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) q(7q4+10) q\left(7 q^{4}+10\right) \newline(B) q(7q4+10q2) q\left(7 q^{4}+10 q^{2}\right) \newline(C) q(2q4+12q3+3q2) q\left(2 q^{4}+12 q^{3}+3 q^{2}\right) \newline(D) q(7q4+3q2+7) q\left(7 q^{4}+3 q^{2}+7\right)
  1. Combine like terms: Combine like terms in the expression (2q5+7q)+(5q5+3q3)(2q^{5}+7q)+(5q^{5}+3q^{3}).\newlineTo combine like terms, we add the coefficients of the terms with the same exponent.\newlineThe terms 2q52q^{5} and 5q55q^{5} are like terms, so we add their coefficients: 2+5=72 + 5 = 7.\newlineThe term 7q7q has no like term to combine with, so it remains as is.\newlineThe term 3q33q^{3} has no like term to combine with, so it remains as is.\newlineThe combined expression is 7q5+3q3+7q7q^{5} + 3q^{3} + 7q.
  2. Add coefficients of like terms: Look at the answer choices to determine which one matches the combined expression.\newline(A) q(7q4+10)q(7q^{4}+10) does not match because it does not have a q5q^{5} term or a q3q^{3} term.\newline(B) q(7q4+10q2)q(7q^{4}+10q^{2}) does not match because it does not have a q5q^{5} term or a q3q^{3} term.\newline(C) q(2q4+12q3+3q2)q(2q^{4}+12q^{3}+3q^{2}) does not match because the coefficients of q5q^{5} and q3q^{3} terms do not match the combined expression.\newline(D) q(7q4+3q2+7)q(7q^{4}+3q^{2}+7) does not match because it does not have a q5q^{5} term or a q3q^{3} term, and the factorization is incorrect.\newlineNone of the answer choices directly match the combined expression q5q^{5}22.
  3. Identify terms with no like terms: Realize that there is a mistake in the previous step because the combined expression should be correctly matched with one of the answer choices.\newlineWe need to re-evaluate the answer choices with the correct combined expression 7q5+3q3+7q7q^{5} + 3q^{3} + 7q.

More problems from Compare linear and exponential growth