Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(2b^(-5))^(3)
Which of the following is equivalent to the given expression for all 
b!=0 ?
Choose 1 answer:
(A) 
(2)/(b^(15))
(B) 
(8)/(b^(15))
(c) 
(1)/(2b^(15))
(D) 
(1)/(8b^(15))

(2b5)3 \left(2 b^{-5}\right)^{3} \newlineWhich of the following is equivalent to the given expression for all b0 b \neq 0 ?\newlineChoose 11 answer:\newline(A) 2b15 \frac{2}{b^{15}} \newline(B) 8b15 \frac{8}{b^{15}} \newline(C) 12b15 \frac{1}{2 b^{15}} \newline(D) 18b15 \frac{1}{8 b^{15}}

Full solution

Q. (2b5)3 \left(2 b^{-5}\right)^{3} \newlineWhich of the following is equivalent to the given expression for all b0 b \neq 0 ?\newlineChoose 11 answer:\newline(A) 2b15 \frac{2}{b^{15}} \newline(B) 8b15 \frac{8}{b^{15}} \newline(C) 12b15 \frac{1}{2 b^{15}} \newline(D) 18b15 \frac{1}{8 b^{15}}
  1. Apply power of power rule: Apply the power of a power rule.\newlineThe power of a power rule states that (am)n=amn(a^m)^n = a^{m*n}. We will apply this rule to the given expression (2b5)3(2b^{-5})^3.\newline(2b5)3=23(b5)3(2b^{-5})^3 = 2^3 \cdot (b^{-5})^3
  2. Calculate powers: Calculate the powers.\newlineNow we calculate the powers separately for 232^3 and (b5)3(b^{-5})^3.\newline23=2×2×2=82^3 = 2 \times 2 \times 2 = 8\newline(b5)3=b5×3=b15(b^{-5})^3 = b^{-5 \times 3} = b^{-15}
  3. Combine results: Combine the results.\newlineWe combine the results from Step 22 to get the final expression.\newline(2b5)3=8b15(2b^{-5})^3 = 8 \cdot b^{-15}
  4. Write expression with positive exponent: Write the expression with positive exponent.\newlineSince b15b^{-15} means 1/(b15)1/(b^{15}), we rewrite the expression with a positive exponent.\newline8b15=8/(b15)8 \cdot b^{-15} = 8 / (b^{15})
  5. Match result with given choices: Match the result with the given choices.\newlineThe expression we found is 8b15\frac{8}{b^{15}}, which matches choice (B).

More problems from Compare linear and exponential growth