Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[-27 x+54 y=9x^(2)-19],[3x-6y=-5]:}
If 
(x_(1),y_(1)) and 
(x_(2),y_(2)) are distinct solutions to the system of equations shown, what is the sum of the 
y-values 
y_(1) and 
y_(2) ?

27x+54yamp;=9x2193x6yamp;=5 \begin{aligned} -27 x+54 y & =9 x^{2}-19 \\ 3 x-6 y & =-5 \end{aligned} \newlineIf (x1,y1) \left(x_{1}, y_{1}\right) and (x2,y2) \left(x_{2}, y_{2}\right) are distinct solutions to the system of equations shown, what is the sum of the y y -values y1 y_{1} and y2 y_{2} ?

Full solution

Q. 27x+54y=9x2193x6y=5 \begin{aligned} -27 x+54 y & =9 x^{2}-19 \\ 3 x-6 y & =-5 \end{aligned} \newlineIf (x1,y1) \left(x_{1}, y_{1}\right) and (x2,y2) \left(x_{2}, y_{2}\right) are distinct solutions to the system of equations shown, what is the sum of the y y -values y1 y_{1} and y2 y_{2} ?
  1. Simplify equations: We have the system of equations:\newline11) 27x+54y=9x219-27x + 54y = 9x^2 - 19\newline22) 3x6y=53x - 6y = -5\newlineFirst, we simplify both equations. For the second equation, we can divide by 33 to simplify it.
  2. Express yy in terms: The simplified second equation is:\newlinex2y=53x - 2y = -\frac{5}{3}\newlineWe can rewrite this as:\newline2y=x+532y = x + \frac{5}{3}
  3. Substitute yy into first: Now, let's express yy in terms of xx from the simplified second equation:\newliney=x+532y = \frac{x + \frac{5}{3}}{2}\newliney=x2+56y = \frac{x}{2} + \frac{5}{6}
  4. Solve for x: Next, we substitute y=x2+56y = \frac{x}{2} + \frac{5}{6} into the first equation to solve for x:\newline\(-27x + 5454\left(\frac{x}{22} + \frac{55}{66}\right) = 99x^22 - 1919
  5. Find x values: We distribute and simplify the equation:\newline27x+27x+45=9x219-27x + 27x + 45 = 9x^2 - 19\newlineThe 27x-27x and +27x+27x cancel each other out, so we have:\newline45=9x21945 = 9x^2 - 19
  6. Calculate y values: Now, we solve for x2x^2: \newline9x2=45+199x^2 = 45 + 19\newline9x2=649x^2 = 64\newlinex2=649x^2 = \frac{64}{9}
  7. Sum of y values: Since x2=649x^2 = \frac{64}{9}, we find the square root of both sides to solve for xx: x=±649x = \pm\sqrt{\frac{64}{9}} x=±83x = \pm\frac{8}{3}
  8. Sum of y values: Since x2=649x^2 = \frac{64}{9}, we find the square root of both sides to solve for xx: \newlinex=±649x = \pm\sqrt{\frac{64}{9}}\newlinex=±83x = \pm\frac{8}{3} We have two values for xx, which are x1=83x_1 = \frac{8}{3} and x2=83x_2 = -\frac{8}{3}. Now we will find the corresponding yy-values using the equation y=x2+56y = \frac{x}{2} + \frac{5}{6}. \newlineFor x1=83x_1 = \frac{8}{3}:\newliney1=(83)/2+56y_1 = \left(\frac{8}{3}\right)/2 + \frac{5}{6}
  9. Sum of y values: Since x2=649x^2 = \frac{64}{9}, we find the square root of both sides to solve for x:\newlinex=±649x = \pm\sqrt{\frac{64}{9}}\newlinex=±83x = \pm\frac{8}{3} We have two values for x, which are x1=83x_1 = \frac{8}{3} and x2=83x_2 = -\frac{8}{3}. Now we will find the corresponding y-values using the equation y=x2+56y = \frac{x}{2} + \frac{5}{6}.\newlineFor x1=83x_1 = \frac{8}{3}:\newliney1=(83)/2+56y_1 = (\frac{8}{3})/2 + \frac{5}{6} Calculating y1y_1:\newliney1=43+56y_1 = \frac{4}{3} + \frac{5}{6}\newlineTo add these fractions, we need a common denominator, which is x=±649x = \pm\sqrt{\frac{64}{9}}00:\newlinex=±649x = \pm\sqrt{\frac{64}{9}}11\newlinex=±649x = \pm\sqrt{\frac{64}{9}}22
  10. Sum of y values: Since x2=649x^2 = \frac{64}{9}, we find the square root of both sides to solve for xx: \newlinex=±649x = \pm\sqrt{\frac{64}{9}}\newlinex=±83x = \pm\frac{8}{3} We have two values for xx, which are x1=83x_1 = \frac{8}{3} and x2=83x_2 = -\frac{8}{3}. Now we will find the corresponding yy-values using the equation y=x2+56y = \frac{x}{2} + \frac{5}{6}. \newlineFor x1=83x_1 = \frac{8}{3}:\newlinexx00 Calculating xx11:\newlinexx22\newlineTo add these fractions, we need a common denominator, which is xx33:\newlinexx44\newlinexx55 For x2=83x_2 = -\frac{8}{3}:\newlinexx77
  11. Sum of y values: Since x2=649x^2 = \frac{64}{9}, we find the square root of both sides to solve for x:\newlinex=±649x = \pm\sqrt{\frac{64}{9}}\newlinex=±83x = \pm\frac{8}{3}We have two values for x, which are x1=83x_1 = \frac{8}{3} and x2=83x_2 = -\frac{8}{3}. Now we will find the corresponding y-values using the equation y=x2+56y = \frac{x}{2} + \frac{5}{6}.\newlineFor x1=83x_1 = \frac{8}{3}:\newliney1=(83)/2+56y_1 = \left(\frac{8}{3}\right)/2 + \frac{5}{6}Calculating y1y_1:\newliney1=43+56y_1 = \frac{4}{3} + \frac{5}{6}\newlineTo add these fractions, we need a common denominator, which is x=±649x = \pm\sqrt{\frac{64}{9}}00:\newlinex=±649x = \pm\sqrt{\frac{64}{9}}11\newlinex=±649x = \pm\sqrt{\frac{64}{9}}22For x2=83x_2 = -\frac{8}{3}:\newlinex=±649x = \pm\sqrt{\frac{64}{9}}44Calculating x=±649x = \pm\sqrt{\frac{64}{9}}55:\newlinex=±649x = \pm\sqrt{\frac{64}{9}}66\newlineAgain, we need a common denominator, which is x=±649x = \pm\sqrt{\frac{64}{9}}00:\newlinex=±649x = \pm\sqrt{\frac{64}{9}}88\newlinex=±649x = \pm\sqrt{\frac{64}{9}}99\newlinex=±83x = \pm\frac{8}{3}00
  12. Sum of y values: Since x2=649x^2 = \frac{64}{9}, we find the square root of both sides to solve for x:\newlinex=±649x = \pm\sqrt{\frac{64}{9}}\newlinex=±83x = \pm\frac{8}{3} We have two values for x, which are x1=83x_1 = \frac{8}{3} and x2=83x_2 = -\frac{8}{3}. Now we will find the corresponding y-values using the equation y=x2+56y = \frac{x}{2} + \frac{5}{6}.\newlineFor x1=83x_1 = \frac{8}{3}:\newliney1=(83)/2+56y_1 = (\frac{8}{3})/2 + \frac{5}{6} Calculating y1y_1:\newliney1=43+56y_1 = \frac{4}{3} + \frac{5}{6}\newlineTo add these fractions, we need a common denominator, which is x=±649x = \pm\sqrt{\frac{64}{9}}00:\newlinex=±649x = \pm\sqrt{\frac{64}{9}}11\newlinex=±649x = \pm\sqrt{\frac{64}{9}}22 For x2=83x_2 = -\frac{8}{3}:\newlinex=±649x = \pm\sqrt{\frac{64}{9}}44 Calculating x=±649x = \pm\sqrt{\frac{64}{9}}55:\newlinex=±649x = \pm\sqrt{\frac{64}{9}}66\newlineAgain, we need a common denominator, which is x=±649x = \pm\sqrt{\frac{64}{9}}00:\newlinex=±649x = \pm\sqrt{\frac{64}{9}}88\newlinex=±649x = \pm\sqrt{\frac{64}{9}}99\newlinex=±83x = \pm\frac{8}{3}00 Now we have both y-values: x=±649x = \pm\sqrt{\frac{64}{9}}22 and x=±83x = \pm\frac{8}{3}00. We find the sum of y1y_1 and x=±649x = \pm\sqrt{\frac{64}{9}}55:\newlinex=±83x = \pm\frac{8}{3}55
  13. Sum of y values: Since x2=649x^2 = \frac{64}{9}, we find the square root of both sides to solve for x:\newlinex=±649x = \pm\sqrt{\frac{64}{9}}\newlinex=±83x = \pm\frac{8}{3}We have two values for x, which are x1=83x_1 = \frac{8}{3} and x2=83x_2 = -\frac{8}{3}. Now we will find the corresponding y-values using the equation y=x2+56y = \frac{x}{2} + \frac{5}{6}.\newlineFor x1=83x_1 = \frac{8}{3}:\newliney1=(83)/2+56y_1 = \left(\frac{8}{3}\right)/2 + \frac{5}{6}Calculating y1y_1:\newliney1=43+56y_1 = \frac{4}{3} + \frac{5}{6}\newlineTo add these fractions, we need a common denominator, which is x=±649x = \pm\sqrt{\frac{64}{9}}00:\newlinex=±649x = \pm\sqrt{\frac{64}{9}}11\newlinex=±649x = \pm\sqrt{\frac{64}{9}}22For x2=83x_2 = -\frac{8}{3}:\newlinex=±649x = \pm\sqrt{\frac{64}{9}}44Calculating x=±649x = \pm\sqrt{\frac{64}{9}}55:\newlinex=±649x = \pm\sqrt{\frac{64}{9}}66\newlineAgain, we need a common denominator, which is x=±649x = \pm\sqrt{\frac{64}{9}}00:\newlinex=±649x = \pm\sqrt{\frac{64}{9}}88\newlinex=±649x = \pm\sqrt{\frac{64}{9}}99\newlinex=±83x = \pm\frac{8}{3}00Now we have both y-values: x=±649x = \pm\sqrt{\frac{64}{9}}22 and x=±83x = \pm\frac{8}{3}00. We find the sum of y1y_1 and x=±649x = \pm\sqrt{\frac{64}{9}}55:\newlinex=±83x = \pm\frac{8}{3}55To add these fractions, we need a common denominator, which is x=±649x = \pm\sqrt{\frac{64}{9}}00:\newlinex=±83x = \pm\frac{8}{3}77\newlinex=±83x = \pm\frac{8}{3}88\newlinex=±83x = \pm\frac{8}{3}99

More problems from Compare linear, exponential, and quadratic growth