Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

((2^(3))^(4)*(2^(34)))/((2^(5))^(8))

(23)4(234)(25)8 \frac{\left(2^{3}\right)^{4} \cdot\left(2^{34}\right)}{\left(2^{5}\right)^{8}}

Full solution

Q. (23)4(234)(25)8 \frac{\left(2^{3}\right)^{4} \cdot\left(2^{34}\right)}{\left(2^{5}\right)^{8}}
  1. Identify and Apply Power Rule: Identify the given expression and apply the power of a power rule which states that (ab)c=a(bc)(a^b)^c = a^{(b*c)}.\newlineThe expression is ((23)4(234))/((25)8)\left((2^{3})^{4}\cdot(2^{34})\right)/\left((2^{5})^{8}\right).\newlineFirst, simplify (23)4(2^{3})^{4} by multiplying the exponents.\newline(23)4=234=212(2^{3})^{4} = 2^{3\cdot4} = 2^{12}.
  2. Simplify Exponent (23)4(2^3)^4: Now, simplify the denominator (25)8(2^{5})^{8} by multiplying the exponents.\newline(25)8=258=240.(2^{5})^{8} = 2^{5*8} = 2^{40}.
  3. Simplify Exponent (25)8(2^5)^8: Combine the simplified parts of the expression.\newlineThe expression now is 212234240\frac{2^{12} \cdot 2^{34}}{2^{40}}.
  4. Combine Simplified Parts: Apply the product of powers rule which states that am×an=a(m+n)a^m \times a^n = a^{(m+n)} to combine the powers of 22 in the numerator.\newline212×234=212+34=246.2^{12}\times2^{34} = 2^{12+34} = 2^{46}.
  5. Apply Product of Powers Rule: Now, apply the quotient of powers rule which states that am/an=a(mn)a^m / a^n = a^{(m-n)} to divide the powers of 22. \newline(246)/240=2(4640)=26(2^{46})/2^{40} = 2^{(46-40)} = 2^{6}.
  6. Apply Quotient of Powers Rule: Finally, simplify 262^{6}. 26=2×2×2×2×2×2=642^{6} = 2\times2\times2\times2\times2\times2 = 64.

More problems from Operations with rational exponents