Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(((10 p)/(9r^(5))))/(((5p^(7))/(3r^(2))))
Which expression is equivalent to the given quotient for all 
p > 2 and 
r < -2 ?
Choose 1 answer:
(A) 
(2)/(3r^(3)p^(6))
(B) 
(2p^(6))/(3r^(3))
(C) 
(3r^(3)p^(6))/(2)
(D) 
(3r^(3))/(2p^(6))

(10p9r5)(5p73r2) \frac{\left(\frac{10 p}{9 r^{5}}\right)}{\left(\frac{5 p^{7}}{3 r^{2}}\right)} \newlineWhich expression is equivalent to the given quotient for all p>2 and r<-2 ?\newlineChoose 11 answer:\newline(A) 23r3p6 \frac{2}{3 r^{3} p^{6}} \newline(B) 2p63r3 \frac{2 p^{6}}{3 r^{3}} \newline(C) 3r3p62 \frac{3 r^{3} p^{6}}{2} \newline(D) 3r32p6 \frac{3 r^{3}}{2 p^{6}}

Full solution

Q. (10p9r5)(5p73r2) \frac{\left(\frac{10 p}{9 r^{5}}\right)}{\left(\frac{5 p^{7}}{3 r^{2}}\right)} \newlineWhich expression is equivalent to the given quotient for all p>2 p>2 and r<2 r<-2 ?\newlineChoose 11 answer:\newline(A) 23r3p6 \frac{2}{3 r^{3} p^{6}} \newline(B) 2p63r3 \frac{2 p^{6}}{3 r^{3}} \newline(C) 3r3p62 \frac{3 r^{3} p^{6}}{2} \newline(D) 3r32p6 \frac{3 r^{3}}{2 p^{6}}
  1. Write and Simplify Expression: Write down the original expression and simplify it by dividing the numerators and denominators separately.\newlineThe original expression is:\newline(10p9r5)÷(5p73r2)\left(\frac{10p}{9r^5}\right) \div \left(\frac{5p^7}{3r^2}\right)\newlineTo divide two fractions, you multiply the first fraction by the reciprocal of the second fraction.\newlineSo, we get:\newline10p9r5×3r25p7\frac{10p}{9r^5} \times \frac{3r^2}{5p^7}
  2. Multiply Numerators and Denominators: Multiply the numerators and denominators.\newlineMultiplying the numerators (1010p and 33r^22) gives us 3030pr^22.\newlineMultiplying the denominators (99r^55 and 55p^77) gives us 4545p^77r^55.\newlineSo, we have:\newline30pr245p7r5\frac{30pr^2}{45p^7r^5}
  3. Cancel Common Factors: Simplify the expression by canceling out common factors.\newlineBoth the numerator and the denominator have common factors of p and r. We can cancel out p from the numerator with one p from the denominator, and r^22 from the numerator with r^22 from the denominator.\newlineThis gives us:\newline3045p6r3\frac{30}{45p^6r^3}
  4. Divide by Greatest Common Divisor: Simplify the fraction by dividing both the numerator and the denominator by their greatest common divisor, which is 1515.\newline30÷1545p6r3÷15\frac{30 \div 15}{45p^6r^3 \div 15}\newlineThis simplifies to:\newline23p6r3\frac{2}{3p^6r^3}
  5. Rearrange Terms: Rearrange the terms to match the answer choices.\newlineThe expression 23p6r3\frac{2}{3p^6r^3} can be rewritten as:\newline23r3p6\frac{2}{3r^3p^6}
  6. Match with Answer Choices: Match the simplified expression to the answer choices.\newlineThe expression 23r3p6\frac{2}{3r^3p^6} matches with choice (A).

More problems from Compare linear and exponential growth