Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(1-a)+3(1-a)^(2)=0
What are the solutions to the given equation?
Choose 1 answer:
(A) 
a=1
(B) 
a=(4)/(3)
(c) 
a=1 and 
a=(4)/(3)
(D) 
a=0 and 
a=-(1)/(3)

(1a)+3(1a)2=0 (1-a)+3(1-a)^{2}=0 \newlineWhat are the solutions to the given equation?\newlineChoose 11 answer:\newline(A) a=1 a=1 \newline(B) a=43 a=\frac{4}{3} \newline(C) a=1 a=1 and a=43 a=\frac{4}{3} \newline(D) a=0 a=0 and a=13 a=-\frac{1}{3}

Full solution

Q. (1a)+3(1a)2=0 (1-a)+3(1-a)^{2}=0 \newlineWhat are the solutions to the given equation?\newlineChoose 11 answer:\newline(A) a=1 a=1 \newline(B) a=43 a=\frac{4}{3} \newline(C) a=1 a=1 and a=43 a=\frac{4}{3} \newline(D) a=0 a=0 and a=13 a=-\frac{1}{3}
  1. Solving the quadratic equation: Now, we need to solve the quadratic equation 3a27a+4=03a^2 - 7a + 4 = 0. We can do this by factoring, completing the square, or using the quadratic formula. Let's try factoring first.\newline(3a4)(a1)=0(3a - 4)(a - 1) = 0\newlineSet each factor equal to zero and solve for aa.\newline3a4=03a - 4 = 0 or a1=0a - 1 = 0
  2. Factoring the quadratic equation: Solve the first equation 3a4=03a - 4 = 0 for aa.3a=43a = 4a=43a = \frac{4}{3}
  3. Solving the first equation: Solve the second equation a1=0a - 1 = 0 for aa.\newlinea=1a = 1
  4. Solving the second equation: We have found two solutions to the equation: a=43a = \frac{4}{3} and a=1a = 1. These are the values of aa that satisfy the original equation.

More problems from Compare linear and exponential growth