Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(((1)/(9))^(124))/(((1)/(3))^(72))
Which of the following values is equal to the given value?
Choose 1 answer:
(A) 
3^(-176)
(B) 
3^(-52)
(C) 
3^(52)
(D) 
3^(176)

(19)124(13)72 \frac{\left(\frac{1}{9}\right)^{124}}{\left(\frac{1}{3}\right)^{72}} \newlineWhich of the following values is equal to the given value?\newlineChoose 11 answer:\newline(A) 3176 3^{-176} \newline(B) 352 3^{-52} \newline(C) 352 3^{52} \newline(D) 3176 3^{176}

Full solution

Q. (19)124(13)72 \frac{\left(\frac{1}{9}\right)^{124}}{\left(\frac{1}{3}\right)^{72}} \newlineWhich of the following values is equal to the given value?\newlineChoose 11 answer:\newline(A) 3176 3^{-176} \newline(B) 352 3^{-52} \newline(C) 352 3^{52} \newline(D) 3176 3^{176}
  1. Simplify expression using exponents: Simplify the given expression using the properties of exponents.\newlineThe given expression is (19)124/(13)72\left(\frac{1}{9}\right)^{124}/\left(\frac{1}{3}\right)^{72}. We know that (19)=32\left(\frac{1}{9}\right) = 3^{-2} and (13)=31\left(\frac{1}{3}\right) = 3^{-1}. Let's rewrite the expression using these equivalences.\newline(19)124/(13)72=(32)124/(31)72\left(\frac{1}{9}\right)^{124}/\left(\frac{1}{3}\right)^{72} = \left(3^{-2}\right)^{124} / \left(3^{-1}\right)^{72}\newlineNow, apply the power of a power rule (am)n=amn(a^{m})^{n} = a^{m*n}.\newline(32)124=32124=3248\left(3^{-2}\right)^{124} = 3^{-2*124} = 3^{-248}\newline(31)72=3172=372\left(3^{-1}\right)^{72} = 3^{-1*72} = 3^{-72}\newlineSo the expression becomes 3248/3723^{-248} / 3^{-72}.
  2. Apply power of a power rule: Apply the quotient of powers rule to simplify the expression further.\newlineThe quotient of powers rule states that am/an=amna^{m} / a^{n} = a^{m-n} when a0a \neq 0.\newline3248/372=3248(72)=3248+72=31763^{-248} / 3^{-72} = 3^{-248 - (-72)} = 3^{-248 + 72} = 3^{-176}.
  3. Apply quotient of powers rule: Match the simplified expression to one of the given choices.\newlineThe simplified expression is 31763^{-176}, which corresponds to choice (A) 31763^{-176}.

More problems from Compare linear and exponential growth