Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

((1)/(8))^(-(2)/(3))
What is the value of the given expression?
Choose 1 answer:
(A) 
-(1)/(12)
(B) 
(1)/(4)
(c) 4
(D) 12

(18)23 \left(\frac{1}{8}\right)^{-\frac{2}{3}} \newlineWhat is the value of the given expression?\newlineChoose 11 answer:\newline(A) 112 -\frac{1}{12} \newline(B) 14 \frac{1}{4} \newline(C) 44\newline(D) 1212

Full solution

Q. (18)23 \left(\frac{1}{8}\right)^{-\frac{2}{3}} \newlineWhat is the value of the given expression?\newlineChoose 11 answer:\newline(A) 112 -\frac{1}{12} \newline(B) 14 \frac{1}{4} \newline(C) 44\newline(D) 1212
  1. Rephrasing the expression: First, let's rephrase the "What is the value of the expression (18)23\left(\frac{1}{8}\right)^{-\frac{2}{3}}?"
  2. Understanding exponent properties: To solve the expression (18)23(\frac{1}{8})^{-\frac{2}{3}}, we need to understand the properties of exponents. A negative exponent means that we take the reciprocal of the base. So, (18)23(\frac{1}{8})^{-\frac{2}{3}} is the same as (81)23(\frac{8}{1})^{\frac{2}{3}}.
  3. Evaluating the base: Next, we need to evaluate (81)(23)(\frac{8}{1})^{(\frac{2}{3})}. The exponent (23)(\frac{2}{3}) means that we take the cube root of the base and then square it. The cube root of 88 is 22, because 23=82^3 = 8.
  4. Finding the cube root: After finding the cube root of 88, we square the result to get the final answer. So, 22 squared is 44.
  5. Squaring the result: Therefore, the value of the given expression (18)23\left(\frac{1}{8}\right)^{-\frac{2}{3}} is 44, which corresponds to choice (C).

More problems from Compare linear and exponential growth