Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 2
Solve trigonometric equations I
Find all solutions with
−
9
0
∘
≤
θ
≤
9
0
∘
-90^\circ \leq \theta \leq 90^\circ
−
9
0
∘
≤
θ
≤
9
0
∘
. Give the exact answer(s) in simplest form. If there are multiple answers, separate them with commas.
\newline
csc
(
θ
)
=
−
1
\csc(\theta) = -1
csc
(
θ
)
=
−
1
\newline
_
_
_
_
∘
\_\_\_\_\,^\circ
____
∘
Get tutor help
Find all solutions with
−
9
0
∘
≤
θ
≤
9
0
∘
-90^\circ \leq \theta \leq 90^\circ
−
9
0
∘
≤
θ
≤
9
0
∘
. Give the exact answer(s) in simplest form. If there are multiple answers, separate them with commas.
\newline
sin
(
θ
)
=
−
1
\sin (\theta) = -1
sin
(
θ
)
=
−
1
\newline
_
_
_
_
∘
\_\_\_\_\,^\circ
____
∘
Get tutor help
Find all solutions with
−
9
0
∘
<
θ
<
9
0
∘
-90^\circ < \theta < 90^\circ
−
9
0
∘
<
θ
<
9
0
∘
. Give the exact answer(s) in simplest form. If there are multiple answers, separate them with commas.
\newline
tan
(
θ
)
=
0
\tan (\theta) = 0
tan
(
θ
)
=
0
\newline
_
_
_
_
∘
\_\_\_\_\,^\circ
____
∘
Get tutor help
Find all solutions with
−
9
0
∘
<
θ
<
9
0
∘
-90^\circ < \theta < 90^\circ
−
9
0
∘
<
θ
<
9
0
∘
. Give the exact answer(s) in simplest form. If there are multiple answers, separate them with commas.
\newline
tan
(
θ
)
=
1
\tan (\theta) = 1
tan
(
θ
)
=
1
\newline
_
_
_
_
∘
\_\_\_\_\,^\circ
____
∘
Get tutor help
Find all solutions with
0
∘
≤
θ
≤
18
0
∘
0^\circ \leq \theta \leq 180^\circ
0
∘
≤
θ
≤
18
0
∘
. Give the exact answer(s) in simplest form. If there are multiple answers, separate them with commas.
\newline
cos
(
θ
)
=
1
2
\cos (\theta) = \frac{1}{2}
cos
(
θ
)
=
2
1
\newline
_
_
_
_
∘
\_\_\_\_\,^\circ
____
∘
Get tutor help
Find all solutions with
−
9
0
∘
≤
θ
≤
9
0
∘
-90^\circ \leq \theta \leq 90^\circ
−
9
0
∘
≤
θ
≤
9
0
∘
. Give the exact answer(s) in simplest form. If there are multiple answers, separate them with commas.
\newline
sin
(
θ
)
=
1
\sin (\theta) = 1
sin
(
θ
)
=
1
\newline
_
_
_
_
∘
\_\_\_\_\,^\circ
____
∘
Get tutor help
Find all solutions with
−
9
0
∘
<
θ
<
9
0
∘
-90^\circ < \theta < 90^\circ
−
9
0
∘
<
θ
<
9
0
∘
. Give the exact answer(s) in simplest form. If there are multiple answers, separate them with commas.
\newline
tan
(
θ
)
=
−
1
\tan (\theta) = -1
tan
(
θ
)
=
−
1
\newline
_
_
_
_
∘
\_\_\_\_\,^\circ
____
∘
Get tutor help
Find all solutions with
0
∘
≤
θ
≤
18
0
∘
0^\circ \leq \theta \leq 180^\circ
0
∘
≤
θ
≤
18
0
∘
. Give the exact answer(s) in simplest form. If there are multiple answers, separate them with commas.
\newline
cos
(
θ
)
=
0
\cos (\theta) = 0
cos
(
θ
)
=
0
\newline
_
_
_
_
∘
\_\_\_\_\,^\circ
____
∘
Get tutor help
Find all solutions with
−
90
°
≤
θ
≤
90
°
-90° \leq \theta \leq 90°
−
90°
≤
θ
≤
90°
. Give the exact answer(s) in simplest form. If there are multiple answers, separate them with commas.
\newline
sin
(
θ
)
=
0
\sin (\theta) = 0
sin
(
θ
)
=
0
\newline
_
_
_
_
°
\_\_\_\_°
____°
Get tutor help
Find all solutions with
−
90
°
≤
θ
≤
90
°
-90° \leq \theta \leq 90°
−
90°
≤
θ
≤
90°
. Give the exact answer(s) in simplest form. If there are multiple answers, separate them with commas.
\newline
sin
(
θ
)
=
1
2
\sin (\theta) = \frac{1}{2}
sin
(
θ
)
=
2
1
\newline
___°
Get tutor help
How many solutions does the system of equations below have?
\newline
y
=
x
−
5
y = x - 5
y
=
x
−
5
\newline
y
=
−
7
5
x
+
10
3
y = -\frac{7}{5}x + \frac{10}{3}
y
=
−
5
7
x
+
3
10
\newline
Choices:
\newline
(A)no solution
\newline
(B)one solution
\newline
(C)infinitely many solutions
Get tutor help
How many solutions does the system of equations below have?
\newline
y
=
−
4
x
+
2
y = -4x + 2
y
=
−
4
x
+
2
\newline
y
=
−
4
x
+
2
y = -4x + 2
y
=
−
4
x
+
2
\newline
Choices:
\newline
(A)no solution
\newline
(B)one solution
\newline
(C)infinitely many solutions
Get tutor help
How many solutions does the system of equations below have?
\newline
y
=
−
3
x
+
3
y = -3x + 3
y
=
−
3
x
+
3
\newline
y
=
−
3
x
−
7
5
y = -3x - \frac{7}{5}
y
=
−
3
x
−
5
7
\newline
Choices:
\newline
(A)no solution
\newline
(B)one solution
\newline
(C)infinitely many solutions
Get tutor help
Line
s
s
s
has an equation of
y
=
8
x
+
7
y=8 x+7
y
=
8
x
+
7
. Line
t
t
t
is perpendicular to line
s
s
s
and passes through
(
−
8
,
−
2
)
(-8,-2)
(
−
8
,
−
2
)
. What is the equation of line
t
t
t
?
\newline
Write the equation in slope-intercept form. Write the numbers in the equation as simplified proper fractions, improper fractions, or integers.
Get tutor help
What are the critical points for the plane curve defined by the equations
x
(
t
)
=
−
sin
(
3
t
)
,
y
(
t
)
=
5
t
x(t)=-\sin (3 t), y(t)=5 t
x
(
t
)
=
−
sin
(
3
t
)
,
y
(
t
)
=
5
t
, and
0
≤
t
<
π
0 \leq t<\pi
0
≤
t
<
π
? Write your answer as a list of values of
t
t
t
, separated by commas. For example, if you found
t
=
1
t=1
t
=
1
or
t
=
2
t=2
t
=
2
, you would enter
1
1
1
,
2
2
2
.
Get tutor help
The equation
\newline
−
x
−
2
y
=
0
-x-2y=0
−
x
−
2
y
=
0
is graphed in the
\newline
x
y
xy
x
y
-plane. Which of the following is a true statement about the graph?
\newline
Choose
1
1
1
answer:
\newline
(A) The graph goes through the point
\newline
(
−
1
,
2
)
(-1,2)
(
−
1
,
2
)
.
\newline
(B) The graph has a slope of
2
2
2
.
\newline
(C) The graph goes through the point
\newline
(
0
,
0
)
(0,0)
(
0
,
0
)
.
\newline
(D) The graph has a slope of
\newline
1
2
\frac{1}{2}
2
1
.
Get tutor help
Kajal tried to solve the differential equation
d
y
d
x
=
−
x
2
y
2
\frac{d y}{d x}=-x^{2} y^{2}
d
x
d
y
=
−
x
2
y
2
. This is her work:
\newline
d
y
d
x
=
−
x
2
y
2
\frac{d y}{d x}=-x^{2} y^{2}
d
x
d
y
=
−
x
2
y
2
\newline
Step
1
1
1
:
∫
−
y
−
2
d
y
=
∫
x
2
d
x
\quad \int-y^{-2} d y=\int x^{2} d x
∫
−
y
−
2
d
y
=
∫
x
2
d
x
\newline
Step
2
2
2
:
y
−
1
=
x
3
3
+
C
\quad y^{-1}=\frac{x^{3}}{3}+C
y
−
1
=
3
x
3
+
C
\newline
Step
3
3
3
:
y
=
3
x
3
+
C
\quad y=\frac{3}{x^{3}}+C
y
=
x
3
3
+
C
\newline
Is Kajal's work correct? If not, what is her mistake?
\newline
Choose
1
1
1
answer:
\newline
(A) Kajal's work is correct.
\newline
(B) Step
1
1
1
is incorrect. The separation of variables wasn't done correctly.
\newline
(C) Step
2
2
2
is incorrect. Kajal didn't integrate
x
2
x^{2}
x
2
correctly.
\newline
(D) Step
3
3
3
is incorrect. Kajal didn't take the reciprocal of
x
3
3
+
C
\frac{x^{3}}{3}+C
3
x
3
+
C
correctly.
Get tutor help
Evaluate. Write your answer in simplified, rationalized form. Do not round.
\newline
cot
3
0
∘
=
\cot 30^\circ =
cot
3
0
∘
=
______
Get tutor help
Find all solutions with
−
9
0
∘
≤
θ
≤
9
0
∘
-90^\circ \leq \theta \leq 90^\circ
−
9
0
∘
≤
θ
≤
9
0
∘
. Give the exact answer(s) in simplest form. If there are multiple answers, separate them with commas.
\newline
csc
(
θ
)
=
−
1
\csc(\theta) = -1
csc
(
θ
)
=
−
1
\newline
_
_
_
_
∘
\_\_\_\_\,^\circ
____
∘
Get tutor help
Find all solutions with
0
∘
≤
θ
≤
18
0
∘
0^\circ \leq \theta \leq 180^\circ
0
∘
≤
θ
≤
18
0
∘
. Give the exact answer(s) in simplest form. If there are multiple answers, separate them with commas.
\newline
cos
(
θ
)
=
−
1
\cos(\theta) = -1
cos
(
θ
)
=
−
1
\newline
‾
∘
\underline{\hspace{2em}}^\circ
∘
Get tutor help