Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 2
Identify linear and exponential functions
A function
h
(
t
)
h(t)
h
(
t
)
increases by a factor of
6
6
6
over every unit interval in
t
t
t
and
h
(
0
)
=
1
h(0) = 1
h
(
0
)
=
1
.
\newline
Which could be a function rule for
h
(
t
)
h(t)
h
(
t
)
?
\newline
Choices:
\newline
(A)
h
(
t
)
=
6
t
h(t) = 6^t
h
(
t
)
=
6
t
\newline
(B)
h
(
t
)
=
0.9
4
t
h(t) = 0.94^t
h
(
t
)
=
0.9
4
t
\newline
(C)
h
(
t
)
=
1
6
t
h(t) = \frac{1}{6^t}
h
(
t
)
=
6
t
1
\newline
(D)
h
(
t
)
=
6
t
h(t) = 6t
h
(
t
)
=
6
t
Get tutor help
Which equation has a constant of proportionality equal to
5
5
5
?
\newline
Choose
1
1
1
answer:
\newline
(A)
y
=
5
x
y=5 x
y
=
5
x
\newline
B
y
=
10
5
x
y=\frac{10}{5} x
y
=
5
10
x
\newline
C)
y
=
5
25
x
y=\frac{5}{25} x
y
=
25
5
x
\newline
(D)
y
=
1
2
x
y=\frac{1}{2} x
y
=
2
1
x
Get tutor help
Which equation has a constant of proportionality equal to
1
1
1
?
\newline
Choose
1
1
1
answer:
\newline
(A)
y
=
10
11
x
y=\frac{10}{11} x
y
=
11
10
x
\newline
(B)
y
=
7
8
x
y=\frac{7}{8} x
y
=
8
7
x
\newline
(C)
y
=
3
15
x
y=\frac{3}{15} x
y
=
15
3
x
\newline
(D)
y
=
x
y=x
y
=
x
Get tutor help
Which value for the constant
c
c
c
makes
z
=
−
5
4
z=-\frac{5}{4}
z
=
−
4
5
an extraneous solution in the following equation?
\newline
4
z
+
9
=
c
z
+
8
c
=
□
\begin{array}{l} \sqrt{4 z+9}=c z+8 \\ c=\square \end{array}
4
z
+
9
=
cz
+
8
c
=
□
Get tutor help
What is the amplitude of
\newline
h
(
x
)
=
7
sin
(
3
π
4
x
−
π
4
)
+
6
?
h(x)=7 \sin \left(\frac{3 \pi}{4} x-\frac{\pi}{4}\right)+6 ?
h
(
x
)
=
7
sin
(
4
3
π
x
−
4
π
)
+
6
?
\newline
units
Get tutor help
What is the amplitude of
\newline
g
(
x
)
=
cos
(
2
π
3
x
)
+
1
?
g(x)=\cos \left(\frac{2 \pi}{3} x\right)+1 ?
g
(
x
)
=
cos
(
3
2
π
x
)
+
1
?
\newline
units
Get tutor help
What is the period of
\newline
y
=
7
sin
(
−
3
π
4
x
−
π
4
)
+
6
?
y=7 \sin \left(-\frac{3 \pi}{4} x-\frac{\pi}{4}\right)+6 ?
y
=
7
sin
(
−
4
3
π
x
−
4
π
)
+
6
?
\newline
Give an exact value.
\newline
units
Get tutor help
Every year
39
39
39
million cars cross the Golden Gate Bridge in San Francisco.
\newline
Which kind of function best models the relationship between time and the cumulative number of cars that have crossed the Golden Gate Bridge?
\newline
Choose
1
1
1
answer:
\newline
(A) Linear
\newline
(B) Exponential
Get tutor help
Fidel has a rare coin worth
$
550
\$ 550
$550
. Each decade, the coin's value increases by
10
%
10 \%
10%
.
\newline
Which kind of function best models the relationship between time and the coin's value?
\newline
Choose
1
1
1
answer:
\newline
(A) Linear
\newline
(B) Exponential
Get tutor help
The number of visitors to the Eiffel Tower in Paris increases by
1.5
%
1.5\%
1.5%
each year.
\newline
Which kind of function best models the relationship between time and the number of visitors to the Eiffel Tower?
\newline
Choose
1
1
1
answer:
\newline
(A) Linear
\newline
(B) Exponential
Get tutor help
Enrico deposited
$
2000
\$ 2000
$2000
in a savings account. Each month he will deposit an additional
$
25
\$ 25
$25
.
\newline
Which kind of function best models the relationship between time and the total amount in the savings account?
\newline
Choose
1
1
1
answer:
\newline
(A) Linear
\newline
(B) Exponential
Get tutor help
A function
f
(
x
)
f(x)
f
(
x
)
increases by
6
6
6
over every unit interval in
x
x
x
and
f
(
0
)
=
0
f(0) = 0
f
(
0
)
=
0
.
\newline
Which could be a function rule for
f
(
x
)
f(x)
f
(
x
)
?
\newline
Choices:
\newline
(A)
f
(
x
)
=
6
x
f(x) = 6x
f
(
x
)
=
6
x
\newline
(B)
f
(
x
)
=
6
x
f(x) = 6^x
f
(
x
)
=
6
x
\newline
(C)
f
(
x
)
=
1
6
x
f(x) = \frac{1}{6^x}
f
(
x
)
=
6
x
1
\newline
(D)
f
(
x
)
=
x
6
f(x) = \frac{x}{6}
f
(
x
)
=
6
x
Get tutor help