Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the period of

y=7sin(-(3pi)/(4)x-(pi)/(4))+6?
Give an exact value.
units

What is the period of\newliney=7sin(3π4xπ4)+6? y=7 \sin \left(-\frac{3 \pi}{4} x-\frac{\pi}{4}\right)+6 ? \newlineGive an exact value.\newlineunits

Full solution

Q. What is the period of\newliney=7sin(3π4xπ4)+6? y=7 \sin \left(-\frac{3 \pi}{4} x-\frac{\pi}{4}\right)+6 ? \newlineGive an exact value.\newlineunits
  1. Period Determination: The period of a sine function is determined by the coefficient of xx inside the sine function. The general form is y=asin(bx+c)+dy = a \cdot \sin(bx + c) + d, where 2πb\frac{2\pi}{|b|} gives the period.
  2. Identify Coefficient: Identify the coefficient of xx, which is 3π4-\frac{3\pi}{4}. The negative sign does not affect the period, so we can ignore it for this calculation.
  3. Calculate Period: Calculate the period using the formula 2πb\frac{2\pi}{|b|}, where bb is the coefficient of xx. So, the period P=2π3π4P = \frac{2\pi}{|\frac{3\pi}{4}|}.
  4. Simplify Expression: Simplify the expression for the period: P = \frac{\(2\)\pi}{\frac{\(3\)\pi}{\(4\)}} = \(2\pi \times \left(\frac{44}{33\pi}\right) = \left(\frac{88}{33}\right)\pi/\pi\.
  5. Find Final Period: Cancel out the π\pi in the numerator and denominator to find the period: P=83P = \frac{8}{3}.

More problems from Identify linear and exponential functions