Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

y=arctan(-6x)

(dy)/(dx)=?
Choose 1 answer:
(A) 
(1)/(-6(1+36x^(2)))
(B) 
(1)/(-6(1-6x))
(C) 
(-6)/(1+36x^(2))
(D) 
(-6)/(1-6x)

y=arctan(6x) y=\arctan (-6 x) \newlinedydx=? \frac{d y}{d x}=? \newlineChoose 11 answer:\newline(A) 16(1+36x2) \frac{1}{-6\left(1+36 x^{2}\right)} \newline(B) 16(16x) \frac{1}{-6(1-6 x)} \newline(C) 61+36x2 \frac{-6}{1+36 x^{2}} \newline(D) 616x \frac{-6}{1-6 x}

Full solution

Q. y=arctan(6x) y=\arctan (-6 x) \newlinedydx=? \frac{d y}{d x}=? \newlineChoose 11 answer:\newline(A) 16(1+36x2) \frac{1}{-6\left(1+36 x^{2}\right)} \newline(B) 16(16x) \frac{1}{-6(1-6 x)} \newline(C) 61+36x2 \frac{-6}{1+36 x^{2}} \newline(D) 616x \frac{-6}{1-6 x}
  1. Recall Derivative of arctan(x): First, let's recall the derivative of arctan(x)\text{arctan}(x) which is 11+x2\frac{1}{1+x^2}. Now we need to apply the chain rule because we have arctan\text{arctan} of a function (6x)(-6x), not just xx.
  2. Apply Chain Rule: Using the chain rule, the derivative of arctan(u)\arctan(u) with respect to xx is 11+u2\frac{1}{1+u^2} \cdot dudx\frac{du}{dx}, where u=6xu = -6x in our case.
  3. Find Derivative of uu: Now, let's find the derivative of u=6xu = -6x with respect to xx, which is simply dudx=6\frac{du}{dx} = -6.
  4. Substitute into Chain Rule Formula: Substitute u=6xu = -6x and dudx=6\frac{du}{dx} = -6 into the chain rule formula to get the derivative of yy with respect to xx: dydx=11+(6x)2×(6)\frac{dy}{dx} = \frac{1}{1+(-6x)^2} \times (-6).
  5. Simplify Expression: Simplify the expression: dydx=61+36x2\frac{dy}{dx} = \frac{-6}{1+36x^2}.

More problems from Find derivatives of inverse trigonometric functions