Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

y=arctan(-4x)
Evaluate 
(dy)/(dx) at 
x=3.
Use an exact expression.

y=arctan(4x) y=\arctan (-4 x) \newlineEvaluate dydx \frac{d y}{d x} at x=3 x=3 .\newlineUse an exact expression.

Full solution

Q. y=arctan(4x) y=\arctan (-4 x) \newlineEvaluate dydx \frac{d y}{d x} at x=3 x=3 .\newlineUse an exact expression.
  1. Differentiate using chain rule: step_1: Differentiate y=arctan(4x)y = \arctan(-4x) with respect to xx using the chain rule.\newlineThe derivative of arctan(u)\arctan(u) with respect to uu is 11+u2\frac{1}{1+u^2}, so by the chain rule, dydx=(11+(4x)2)d(4x)dx\frac{dy}{dx} = \left(\frac{1}{1+(-4x)^2}\right) * \frac{d(-4x)}{dx}.
  2. Calculate derivative of 4x-4x: step_2: Calculate the derivative of 4x-4x with respect to xx.d(4x)dx=4.\frac{d(-4x)}{dx} = -4.
  3. Substitute derivative into result: step_3: Substitute the derivative of 4x-4x into the result from step 11.\newline\frac{dy}{dx} = \left(\frac{1}{1+(\-4x)^2}\right) * (\-4).
  4. Simplify expression for dydx\frac{dy}{dx}: step_4: Simplify the expression for dydx\frac{dy}{dx}.dydx=41+16x2\frac{dy}{dx} = \frac{-4}{1+16x^2}.
  5. Evaluate dydx\frac{dy}{dx} at x=3x = 3: step_5: Evaluate dydx\frac{dy}{dx} at x=3x = 3.dydx\frac{dy}{dx} at x=3x = 3 is 41+16(3)2-\frac{4}{1+16(3)^2}.
  6. Calculate exact expression at x=3x = 3: step_6: Calculate the exact expression for dydx\frac{dy}{dx} at x=3x = 3.dydx\frac{dy}{dx} at x=3x = 3 is 41+169-\frac{4}{1+16\cdot 9}.
  7. Simplify the denominator: step_7: Simplify the denominator.\newline1+16×9=1+1441+16\times 9 = 1+144.
  8. Add numbers in the denominator: step_8: Add the numbers in the denominator. 1+144=1451+144 = 145.
  9. Write final expression for dydx\frac{dy}{dx}: step_9: Write the final expression for dydx\frac{dy}{dx} at x=3x = 3.\newlinedydx\frac{dy}{dx} at x=3x = 3 is 4145-\frac{4}{145}.

More problems from Find derivatives of inverse trigonometric functions