Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

y=arcsin((x)/(4))

(dy)/(dx)=?
Choose 1 answer:
(A) 
(1)/(sqrt(1-(x^(2))/(16)))
(B) 
(1)/(4sqrt(1-(x^(2))/(16)))
(c) 
(1)/(sqrt(1-(x^(2))/(4)))
(D) 
(1)/(4sqrt(1-(x^(2))/(4)))

y=arcsin(x4) y=\arcsin \left(\frac{x}{4}\right) \newlinedydx=? \frac{d y}{d x}=? \newlineChoose 11 answer:\newline(A) 11x216 \frac{1}{\sqrt{1-\frac{x^{2}}{16}}} \newline(B) 141x216 \frac{1}{4 \sqrt{1-\frac{x^{2}}{16}}} \newline(c) 11x24 \frac{1}{\sqrt{1-\frac{x^{2}}{4}}} \newline(D) 141x24 \frac{1}{4 \sqrt{1-\frac{x^{2}}{4}}}

Full solution

Q. y=arcsin(x4) y=\arcsin \left(\frac{x}{4}\right) \newlinedydx=? \frac{d y}{d x}=? \newlineChoose 11 answer:\newline(A) 11x216 \frac{1}{\sqrt{1-\frac{x^{2}}{16}}} \newline(B) 141x216 \frac{1}{4 \sqrt{1-\frac{x^{2}}{16}}} \newline(c) 11x24 \frac{1}{\sqrt{1-\frac{x^{2}}{4}}} \newline(D) 141x24 \frac{1}{4 \sqrt{1-\frac{x^{2}}{4}}}
  1. Apply Chain Rule: To find the derivative of y=arcsin(x4)y = \arcsin\left(\frac{x}{4}\right), we use the chain rule.
  2. Derivative of arcsin(u): The derivative of arcsin(u)\text{arcsin}(u) with respect to uu is 11u2\frac{1}{\sqrt{1-u^2}}. Here, u=x4u = \frac{x}{4}.
  3. Derivative of uu: Now we need to find the derivative of u=x4u = \frac{x}{4} with respect to xx, which is 14\frac{1}{4}.
  4. Apply Chain Rule Again: Applying the chain rule, the derivative of yy with respect to xx is 11(x4)2\frac{1}{\sqrt{1-(\frac{x}{4})^2}} * dudx\frac{du}{dx}.
  5. Substitute dudx\frac{du}{dx}: Substitute dudx=14\frac{du}{dx} = \frac{1}{4} into the equation, we get 11(x4)2×14\frac{1}{\sqrt{1-(\frac{x}{4})^2}} \times \frac{1}{4}.
  6. Simplify Final Answer: Simplify the expression to get the final answer: (141(x216))(\frac{1}{4\sqrt{1-(\frac{x^2}{16})}}).

More problems from Find derivatives of inverse trigonometric functions