Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
y
=
arcsin
(
x
4
)
y=\arcsin \left(\frac{x}{4}\right)
y
=
arcsin
(
4
x
)
\newline
d
y
d
x
=
?
\frac{d y}{d x}=?
d
x
d
y
=
?
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
−
x
2
16
\frac{1}{\sqrt{1-\frac{x^{2}}{16}}}
1
−
16
x
2
1
\newline
(B)
1
4
1
−
x
2
16
\frac{1}{4 \sqrt{1-\frac{x^{2}}{16}}}
4
1
−
16
x
2
1
\newline
(c)
1
1
−
x
2
4
\frac{1}{\sqrt{1-\frac{x^{2}}{4}}}
1
−
4
x
2
1
\newline
(D)
1
4
1
−
x
2
4
\frac{1}{4 \sqrt{1-\frac{x^{2}}{4}}}
4
1
−
4
x
2
1
View step-by-step help
Home
Math Problems
Calculus
Find derivatives of inverse trigonometric functions
Full solution
Q.
y
=
arcsin
(
x
4
)
y=\arcsin \left(\frac{x}{4}\right)
y
=
arcsin
(
4
x
)
\newline
d
y
d
x
=
?
\frac{d y}{d x}=?
d
x
d
y
=
?
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
−
x
2
16
\frac{1}{\sqrt{1-\frac{x^{2}}{16}}}
1
−
16
x
2
1
\newline
(B)
1
4
1
−
x
2
16
\frac{1}{4 \sqrt{1-\frac{x^{2}}{16}}}
4
1
−
16
x
2
1
\newline
(c)
1
1
−
x
2
4
\frac{1}{\sqrt{1-\frac{x^{2}}{4}}}
1
−
4
x
2
1
\newline
(D)
1
4
1
−
x
2
4
\frac{1}{4 \sqrt{1-\frac{x^{2}}{4}}}
4
1
−
4
x
2
1
Apply Chain Rule:
To find the derivative of
y
=
arcsin
(
x
4
)
y = \arcsin\left(\frac{x}{4}\right)
y
=
arcsin
(
4
x
)
, we use the
chain rule
.
Derivative of arcsin(u):
The derivative of
arcsin
(
u
)
\text{arcsin}(u)
arcsin
(
u
)
with respect to
u
u
u
is
1
1
−
u
2
\frac{1}{\sqrt{1-u^2}}
1
−
u
2
1
. Here,
u
=
x
4
u = \frac{x}{4}
u
=
4
x
.
Derivative of
u
u
u
:
Now we need to find the derivative of
u
=
x
4
u = \frac{x}{4}
u
=
4
x
with respect to
x
x
x
, which is
1
4
\frac{1}{4}
4
1
.
Apply Chain Rule Again:
Applying the chain rule, the derivative of
y
y
y
with respect to
x
x
x
is
1
1
−
(
x
4
)
2
\frac{1}{\sqrt{1-(\frac{x}{4})^2}}
1
−
(
4
x
)
2
1
*
d
u
d
x
\frac{du}{dx}
d
x
d
u
.
Substitute
d
u
d
x
\frac{du}{dx}
d
x
d
u
:
Substitute
d
u
d
x
=
1
4
\frac{du}{dx} = \frac{1}{4}
d
x
d
u
=
4
1
into the equation, we get
1
1
−
(
x
4
)
2
×
1
4
\frac{1}{\sqrt{1-(\frac{x}{4})^2}} \times \frac{1}{4}
1
−
(
4
x
)
2
1
×
4
1
.
Simplify Final Answer:
Simplify the expression to get the final answer:
(
1
4
1
−
(
x
2
16
)
)
(\frac{1}{4\sqrt{1-(\frac{x^2}{16})}})
(
4
1
−
(
16
x
2
)
1
)
.
More problems from Find derivatives of inverse trigonometric functions
Question
Find
lim
θ
→
π
2
tan
2
(
θ
)
[
1
−
sin
(
θ
)
]
\lim_{\theta \rightarrow \frac{\pi}{2}} \tan ^{2}(\theta)[1-\sin (\theta)]
lim
θ
→
2
π
tan
2
(
θ
)
[
1
−
sin
(
θ
)]
.
\newline
Choose
1
1
1
answer:
\newline
(A)
0
0
0
\newline
(B)
1
2
\frac{1}{2}
2
1
\newline
(C)
−
2
-2
−
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
θ
→
π
2
sin
2
(
2
θ
)
1
−
sin
2
(
θ
)
\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{\sin ^{2}(2 \theta)}{1-\sin ^{2}(\theta)}
lim
θ
→
2
π
1
−
s
i
n
2
(
θ
)
s
i
n
2
(
2
θ
)
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
2
2
2
\newline
(C)
4
4
4
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
3
x
−
3
4
x
+
4
−
4
\lim _{x \rightarrow 3} \frac{x-3}{\sqrt{4 x+4}-4}
lim
x
→
3
4
x
+
4
−
4
x
−
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
4
-4
−
4
\newline
(B)
1
1
1
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
4
7
x
+
28
x
2
+
x
−
12
\lim _{x \rightarrow-4} \frac{7 x+28}{x^{2}+x-12}
lim
x
→
−
4
x
2
+
x
−
12
7
x
+
28
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
7
7
7
\newline
(C)
−
1
-1
−
1
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
3
x
+
3
4
−
2
x
+
22
\lim _{x \rightarrow-3} \frac{x+3}{4-\sqrt{2 x+22}}
lim
x
→
−
3
4
−
2
x
+
22
x
+
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
3
-3
−
3
\newline
(B)
−
4
-4
−
4
\newline
(C)
−
3
4
-\frac{3}{4}
−
4
3
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
1
5
x
+
4
−
3
x
−
1
\lim _{x \rightarrow 1} \frac{\sqrt{5 x+4}-3}{x-1}
lim
x
→
1
x
−
1
5
x
+
4
−
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
3
5
\frac{3}{5}
5
3
\newline
(B)
5
6
\frac{5}{6}
6
5
\newline
(C)
1
1
1
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
2
x
3
+
3
x
2
+
2
x
x
+
2
\lim _{x \rightarrow-2} \frac{x^{3}+3 x^{2}+2 x}{x+2}
lim
x
→
−
2
x
+
2
x
3
+
3
x
2
+
2
x
.
\newline
Choose
1
1
1
answer:
\newline
(A)
6
6
6
\newline
(B)
0
0
0
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
π
2
cot
2
(
x
)
1
−
sin
(
x
)
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cot ^{2}(x)}{1-\sin (x)}
lim
x
→
2
π
1
−
s
i
n
(
x
)
c
o
t
2
(
x
)
\newline
Choose
1
1
1
answer:
\newline
(A)
−
1
-1
−
1
\newline
(B)
−
π
2
-\frac{\pi}{2}
−
2
π
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
π
2
sin
(
2
x
)
cos
(
x
)
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (2 x)}{\cos (x)}
lim
x
→
2
π
c
o
s
(
x
)
s
i
n
(
2
x
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
2
\frac{1}{2}
2
1
\newline
(B)
1
1
1
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
θ
→
π
4
cos
(
2
θ
)
2
cos
(
θ
)
−
1
\lim _{\theta \rightarrow \frac{\pi}{4}} \frac{\cos (2 \theta)}{\sqrt{2} \cos (\theta)-1}
lim
θ
→
4
π
2
c
o
s
(
θ
)
−
1
c
o
s
(
2
θ
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
2
2
2
\newline
(B)
1
2
\frac{1}{2}
2
1
\newline
(C)
2
\sqrt{2}
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant